• 제목/요약/키워드: ${\eta}-Ricci$ solitons

검색결과 22건 처리시간 0.014초

STUDY OF GRADIENT SOLITONS IN THREE DIMENSIONAL RIEMANNIAN MANIFOLDS

  • Biswas, Gour Gopal;De, Uday Chand
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.825-837
    • /
    • 2022
  • We characterize a three-dimensional Riemannian manifold endowed with a type of semi-symmetric metric P-connection. At first, it is proven that if the metric of such a manifold is a gradient m-quasi-Einstein metric, then either the gradient of the potential function 𝜓 is collinear with the vector field P or, λ = -(m + 2) and the manifold is of constant sectional curvature -1, provided P𝜓 ≠ m. Next, it is shown that if the metric of the manifold under consideration is a gradient 𝜌-Einstein soliton, then the gradient of the potential function is collinear with the vector field P. Also, we prove that if the metric of a 3-dimensional manifold with semi-symmetric metric P-connection is a gradient 𝜔-Ricci soliton, then the manifold is of constant sectional curvature -1 and λ + 𝜇 = -2. Finally, we consider an example to verify our results.

GRADIENT RICCI ALMOST SOLITONS ON TWO CLASSES OF ALMOST KENMOTSU MANIFOLDS

  • Wang, Yaning
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1101-1114
    • /
    • 2016
  • Let ($M^{2n+1}$, ${\phi}$, ${\xi}$, ${\eta}$, g) be a (k, ${\mu}$)'-almost Kenmotsu manifold with k < -1 which admits a gradient Ricci almost soliton (g, f, ${\lambda}$), where ${\lambda}$ is the soliton function and f is the potential function. In this paper, it is proved that ${\lambda}$ is a constant and this implies that $M^{2n+1}$ is locally isometric to a rigid gradient Ricci soliton ${\mathbb{H}}^{n+1}(-4){\times}{\mathbb{R}}^n$, and the soliton is expanding with ${\lambda}=-4n$. Moreover, if a three dimensional Kenmotsu manifold admits a gradient Ricci almost soliton, then either it is of constant sectional curvature -1 or the potential vector field is pointwise colinear with the Reeb vector field.