• Title/Summary/Keyword: ${\eta} _{c*}$

Search Result 360, Processing Time 0.023 seconds

Rheological Properties of Citrus Pectin Solutions (감귤류 펙틴 용액의 리올리지 특성)

  • Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.799-806
    • /
    • 1995
  • The steady shear and small amplitude oscillatory dynamic rheological properties of citrus pectin $([\eta]=3.75\;dL/g)$ were characterized for a wide range of pectin concentrations $({\sim}6%)$. The typical power-law flow was observed above 2.0% concentration, and the shear rate dependence of viscosity increased with pectin concentration. The transition from dilute to concentrated regime, determined from the double logarithmic plot of ${\eta_{sp.o}}\;vs\;C[\eta]$, occurred at a critical coil overlap parameter $C^{*}[\eta]\approx4.0$, at which ${\eta_{sp.o}}$ corresponded to approximately 10.0. The slopes of ${\eta_{sp.o}}\;vs\;C[\eta]$, at $C[\eta]\;at\;C[\eta]C^{*}[\eta]$were 1.1 and 4.5, respectively. The steady viscosity $(\eta)$ displayed a good superposition at ${\eta}/{\eta}_o\;vs\;{\gamma}/{\gamma}_{0.8}$ relation with an exception of high concentration (6%), which arised from the significant deviation of flow behavior index (n values of $\eta_{a}=K\gamma^{n-1}$) at high concentration. Dynamic measurements showed that the loss modulus $(G^{\prime\prime})$ was much higher than the storage modulus $(G^\prime)$for all concentrations studied, indicating predominant viscoelastic liquid-like behavior of pectin solutions. The frequency dependence of $G^\prime$ was higher than that of $G^\prime\prime$ at the same concentration, whose trend was more pronounced with decreasing pectin concentration. The shear viscosity $(\eta)$ was almost identical to the complex viscosity $(\eta^{*})$ at low concentration, following the Cox-Merz rule, but they became increasingly different at high concentration.

  • PDF

Non-Newtonian Intrinsic Viscosities of Biopolymeric and Nonbiopolymeric Solutions (I)

  • Jang, Chun-Hag;Kim, Jong-Ryul;Ree, Tai-Kyue
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.318-324
    • /
    • 1987
  • Experimental results for viscous flow of poly (${\gamma}$ -methyl L-glutamate) solutions have been published elsewhere. The data of $[{\eta}]^f / [{\eta}]^0$ are expressed by the following equation, $\frac{[{\eta}^f]}{[{\eta}^{\circ}]}=1-\frac{A}{\eta^\circ}{1-\frac{sin^{-1}[{\beta}_2(f/{\eta}_0)\;{e}xp\;(-c_2f^2/{\eta}_0^2kT)]}{{\beta}_2f/{\eta}_0}$ (A1) where $[{\eta}]^f\; and\; [{\eta} ]^0$ are the intrinsic viscosity at shear stress f and zero, respectively, $ A{\equiv}lim\limits_{C{\rightarrow}0}[(1/C)(X_2/{\alpha}_2)({\beta}_2/{\eta}_0)],{\eta}_0$ viscosity of the solvent, ${\beta}_2$ is the relaxation time of flow unit 2, $c_2$ is a constant related to the elasticity of flow unit 2. The theoretical derivation of Eq.(A1) is given in the text. The experimental curves of $[{\eta}]^f / [{\eta}]^0$ vs. log f are compared with the theoretical curves calculated from Eq.(A1) with good results. Eq.(A1) is also applied to non-biopolymeric solutions, and it was found that in the latter case $c_2 = 0.$ The reason for this is explained in the text. The problems related to non-Newtonian flows are discussed.

On the Growth of Transcendental Meromorphic Solutions of Certain algebraic Difference Equations

  • Xinjun Yao;Yong Liu;Chaofeng Gao
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.1
    • /
    • pp.185-196
    • /
    • 2024
  • In this article, we investigate the growth of meromorphic solutions of $${\alpha}(z)(\frac{{\Delta}_c{\eta}}{{\eta}})^2\,+\,(b_2(z){\eta}^2(z)\;+\;b_1(z){\eta}(z)\;+\;b_0(z))\frac{{\Delta}_c{\eta}}{{\eta}} \atop =d_4(z){\eta}^4(z)\;+\;d_3(z){\eta}^3(z)\;+\;d_2(z){\eta}^2(z)\;+\;d_1(z){\eta}(z)\;+\;d_0(z),$$ where a(z), bi(z) for i = 0, 1, 2 and dj (z) for j = 0, ..., 4 are given functions, △cη = η(z + c) - η(z) with c ∈ ℂ\{0}. In particular, when the a(z), the bi(z) and the dj(z) are polynomials, and d4(z) ≡ 0, we shall show that if η(z) is a transcendental entire solution of finite order, and either deg a(z) ≠ deg d0(z) + 1, or, deg a(z) = deg d0(z) + 1 and ρ(η) ≠ ½, then ρ(η) ≥ 1.

Chiral [Iminophosphoranyl]ferrocenes: Synthesis, Coordination Chemistry, and Catalytic Application

  • Co, Thanh Thien;Shim, Sang-Chul;Cho, Chan-Sik;Kim, Dong-Uk;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1359-1365
    • /
    • 2005
  • A series of new chiral [iminophosphoranyl]ferrocenes, {${\eta}^5-C_5H_4-(PPh_2=N-2,6-R_2-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-PPh^2-2-CH(Me)NMe_2$} (1: R = Me, $^iPr$), {${\eta}^5{-C_5H_4-(PPh_2=N-2,6-R_2}^1-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-(PPh_2=N-2,6-R_2-C_6H_3)-2-CH(Me)R_2$} (2: $R^1\;=\;Me,\;^iPr;\;R^2\;=\;NMe_2$, OMe), and $({\eta}^5-C_5H_5)Fe${${\eta}^5-C_5H_4-1-PR_2-2-CH(Me)N=PPh_3$} (3:R = Ph, $C_6H_{11}$) have been prepared from the reaction of [1,1'-diphenylphosphino-2-(N,N-dimethylamino) ethyl]ferrocene with arylazides (1 & 2) and the reaction of phosphine dichlorides ($R_3PCl_{2}$) with [1,1'-diphenylphosphino-2-aminoethyl]ferrocene (3), respectively. They form palladium complexes of the type $[Pd(C_3H_5)(L)]BF_4$ (4-6: L = 1-3), where the ligand (L) adopts an ${\eta}^2-N,N\;(2)\;or\;{\eta}^2$-P,N (3) as expected. In the case of 1, a potential terdentate, an ${\eta}^2$-P,N mode is realized with the exclusion of the –=NAr group from the coordination sphere. Complexes 4-6 were employed as catalysts for allylic alkylation of 1,3-diphenylallyl acetate leading to an almost stoichiometric product yield with modest enantiomeric excess (up to 74% ee). Rh(I)-complexes incorporating 1-3 were also prepared in situ for allylic alkylation of cinnamyl acetate as a probe for both regio- and enantioselectivities of the reaction. The reaction exhibited high regiocontrol in favor of a linear achiral isomer regardless of the ligand employed.

Synthesis and Reactions of Organoruthenium(Ⅲ) Complexes (새로운 3가 유기루테늄 착물의 합성과 반응)

  • Lee Dong-Hwan;Kim Hag-Gu;Seo Dae-Ryong;Kim Byung-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.98-104
    • /
    • 1993
  • The paramagnetic organoruthenium(III) complexes $({\eta}^5-C_5Me_5)RuCl_2(PR_3) (PR_3 = PMe_3,\;PEt_3,\;PiPr_3,\;PCy_3,\;PMe_2Ph,\;PMePh_2,\;PPh_3,\;P(p-C_6H_4CH_3)_3$, DPPE, DPPB, Py) (2a∼2k) were synthesized by the reaction of $[({\eta}^5-C_5Me_5)RuCl_2]_2$ (1) with 1 equivalent of the corresponding phosphines $(PR_3)$. The effective magnetic moment ((${\mu}_{eff} = 1.65∼2.07 B.M.$)) derived from the magnetic susceptibility measurements of the complexes (2a∼2k) were consistent with the presence of a "single" unpaired electron in the molecule. Treatment of dichlororuthenium (III) complex ({\eta}^5-C_5Me_5)RuCl_2(PR_3)$ (2) (i) with KBr in acetone afforded the dibromoruthenium (III) complex $({\eta}^5-C_5Me_5)RuBr_2(PR_3) (PR_3 = PPh_3)$, (ii) with sodium amalgam in diethylether led to the bis(phosphine) derivatives $({eta}^5-C_5Me_5)RuCl(PR_3)_2 (PR_3 = PMe_3,\;PMePh_2)$, and (iii) with carbonmonoxide gave to the carbonyl derivatives $({\eta}^5-C_5Me_5)RuCl(PR_3)(CO) (PR_3 = PMe_3,\;PPh_3)$.

  • PDF

The First Organobismuth Compound with Differently Substituted, ${\pi}$-bonded Cyclopentadienylring, ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$ (서로 다른 씨클로펜타디엔 유도체가 결합된 최초의 비스무스 화합물, ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$의 합성과 결정구조)

  • Shin, Sung-Hee;Hwang, Kyo-Hyun;Chun, Jong-Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.87-91
    • /
    • 1997
  • 서로 다른 씨클로펜타디엔 유도체가 ${\pi}$-결합된 최초의 비스무스 화합물인 ${\eta}^5-C_5(CH_3)_5Bi({\eta}^5-C_5H_5)_2$이 디펜타메틸씨클로펜타디에닐 비스무스디메틸아미드 $Cp{\ast}_2BiNMe_2[Cp{\ast}=C_5(CH_3)_5]$와 씨클로펜타디에닐 모노머와의 반응으로 합성되었다. 반응조건은 에테르 용매하에 -78$^{\circ}C$ 반응온도 조건하에서 얻어졌다. 합성된 반응물을 노르말 헥산 용매에서 재결정시킨 결과, 검은색 결정이 60% 수율로 얻어졌다. 그리고 재결정시킨 반응물을 190K에서 X-선 단결정 구조 분석 방법에 의해 그 구조를 밝혔다. 그 결과 결정계의 격자계는 I2/a, a=1756.00 picometer, b=906.00 picometer, c=2211.00 picometer, ${\beta}$=104.04, Z=8로 확인되었다. 여기서 a, b, c는 결정�Ю� 상수이고, ${\beta}$는 결정격자 상수인 b와 c간의 각도이며, Z는 단위 결정 격자당 분자의 갯수이다.

Probe Diffusion and Viscosity Properties in Dimethyl Sulfoxide Solution of Poly(vinyl alcohol) with High Degree of Hydrolysis (고검화도의 폴리(비닐 알코올)/디메틸설폭사이드 용액에서의 점성도 특성과 탐침입자의 확산)

  • Eom, Hyo-Sang;Park, Il-Hyun
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.415-423
    • /
    • 2010
  • Poly(vinyl alcohol)(PVA) with high degree of hydrolysis of above 98% was dissolved in dimethyl sulfoxide(DMSO), and the shear viscosity was measured up to $C{\simeq}0.14\;g/mL$ in the semi-dilute solution regime. Next, as probe particle, polystyrene(PS) latex was introduced into this matrix system and its delayed diffusion due to polymer concentration was investigated by means of dynamic light scattering. When the solution viscosity of PVA/DMSO was plotted against the reduced concentration $C[{\eta}]$, which is scaled by the intrinsic viscosity, the molecular weight dependence was strongly appeared at C$[{\eta}]$ >2. Some heterogeneties in polymer solution were considered as its source. Contrary, the diffusion of probe particle in the matrix solution was observed as a single mode motion at whole concentration range but its ratio of its diffusion coefficient at solution to that at solvent, D/Do did not show any molecular weight dependence at all. However, the application limit of the stretched exponential function was disclosed at C$[{\eta}]$ >2.5.

$({\eta}^5-C_5Me_5)_2BiCl$, The First Organobismuth Compound with $\pi$-bonded Cyclopentadienyl Ring Analysized by X-ray Diffractometry (X-선 회절 분석법에 의한 고리화펜타디에닐 고리가 $\pi$-결합된 최초의 유기비스무트화합물의 구조결정)

  • Lorberth, J.;Shin, Sung-Hee;Kong, Young Kun
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 1998
  • The reaction of $({\eta}^5-C_5Me_5)_2K$ with $BiCl_3$ yielded $({\eta}^5-C_5Me_5)_2BiCl$[I], the first organobismuth compound with ${\pi}$-bonded cyclopentadienyl ring. The compound I which was the violet crystal (yield, 30%) was decomposed to $PCpBiCl_2$. The Structure of $({\eta}^5-C_5Me_5)_2BiCl$ was identified as single crystal by X-ray diffraction method. The eliminated product $C_{20}H_{30}$, triclinic crystal of space group p1(Z=2) which was attached with C-C ${\sigma}$-bond of two cyclopentadienyl was defined by the structural analysis.

  • PDF

The Reaction of the Tripledecker Complexes, 4(CpCo)_2(C_4R_4)$ and Alkynes (Tripledecker 착물, $(CpCo)_2(C_4R_4)$과 Alkyne과의 반응)

  • Uhm, Jae-Kook;Lee, Won-Sik;Kim, Seog-Bong;Cha, Jin-Soon;Lee, Hyung-Soo;Lee, Dong-Ho;Kim, Hong-Seok;Sim, Sang-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.832-836
    • /
    • 1993
  • The tripledecker complexes, bis-(${\eta}^5-cyclopentadienyl)-{\mu}-({\eta}^4-1,2,3,4-tetraalkylcyclobutadiene$)dicobalt were produced by the reaction of Jonas reagent with 2-hexyne and 3-hexyne in the maximum yield (above 50%) when they were reacted in eq-molar amounts at room temperature. A tripledecker complex, bis-${\eta}^5-cyclopentadienyl)-{\mu}-({\eta}^4-1,2,3,4-tetraethyl cyclobutadiene$)dicobalt(13) was isomerized to (${\eta}^5-cyclopentadienyl)cobaltacyclopentadiene-{\mu}-({\eta}^4-2,4-cobaltacyclopentadiene$)(${\eta}^5-cyclopentadienyl$)cobalt(15) on reacting with 3-hexyne at room temperature. Another tripledecker complex, bis-(${\eta}^5-cyclopentadienyl)-{\mu}-({\eta}^4-1,3-dimethyl-2,4-dipropyl cyclobutadiene$)dicobalt(14) was decomposed to give 1,3,5-trimethyl-2,4,6-tripropylbenzene through an intermediate complex by the reaction of 2-hexyne.

  • PDF

EXISTENCE OF NONTRIVIAL SOLUTIONS OF THE NONLINEAR BIHARMONIC SYSTEM

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • We investigate the existence of nontrivial solutions of the nonlinear biharmonic system with Dirichlet boundary condition $$(0.1)\;\begin{array}{lcr}{\Delta}^2{\xi}+c{\Delta}{\xi}={\mu}h({\xi}+{\eta})\;in{\Omega},\\{\Delta}^2{\eta}+c{\Delta}{\eta}={\nu}h({\xi}+{\eta})\;in{\Omega},\end{array}$$ where $c{\in}R$ and ${\Delta}^2$ denote the biharmonic operator.

  • PDF