• Title/Summary/Keyword: ${\eta}$-Einstein soliton

Search Result 12, Processing Time 0.014 seconds

BETA-ALMOST RICCI SOLITONS ON ALMOST COKÄHLER MANIFOLDS

  • Kar, Debabrata;Majhi, Pradip
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.691-705
    • /
    • 2019
  • In the present paper is to classify Beta-almost (${\beta}$-almost) Ricci solitons and ${\beta}$-almost gradient Ricci solitons on almost $CoK{\ddot{a}}hler$ manifolds with ${\xi}$ belongs to ($k,{\mu}$)-nullity distribution. In this paper, we prove that such manifolds with V is contact vector field and $Q{\phi}={\phi}Q$ is ${\eta}$-Einstein and it is steady when the potential vector field is pointwise collinear to the reeb vectoer field. Moreover, we prove that a ($k,{\mu}$)-almost $CoK{\ddot{a}}hler$ manifolds admitting ${\beta}$-almost gradient Ricci solitons is isometric to a sphere.