• Title/Summary/Keyword: ${\delta}-catenin$

Search Result 5, Processing Time 0.02 seconds

δ-Catenin Increases the Stability of EGFR by Decreasing c-Cbl Interaction and Enhances EGFR/Erk1/2 Signaling in Prostate Cancer

  • Shrestha, Nensi;Shrestha, Hridaya;Ryu, Taeyong;Kim, Hangun;Simkhada, Shishli;Cho, Young-Chang;Park, So-Yeon;Cho, Sayeon;Lee, Kwang-Youl;Lee, Jae-Hyuk;Kim, Kwonseop
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.320-330
    • /
    • 2018
  • ${\delta}$-Catenin, a member of the p120-catenin subfamily of armadillo proteins, reportedly increases during the late stage of prostate cancer. Our previous study demonstrates that ${\delta}$-catenin increases the stability of EGFR in prostate cancer cell lines. However, the molecular mechanism behind ${\delta}$-catenin-mediated enhanced stability of EGFR was not explored. In this study, we hypothesized that ${\delta}$-catenin enhances the protein stability of EGFR by inhibiting its lysosomal degradation that is mediated by c-casitas b-lineage lymphoma (c-Cbl), a RING domain E3 ligase. c-Cbl monoubiquitinates EGFR and thus facilitates its internalization, followed by lysosomal degradation. We observed that ${\delta}$-catenin plays a key role in EGFR stability and downstream signaling. ${\delta}$-Catenin competes with c-Cbl for EGFR binding, which results in a reduction of binding between c-Cbl and EGFR and thus decreases the ubiquitination of EGFR. This in turn increases the expression of membrane bound EGFR and enhances EGFR/Erk1/2 signaling. Our findings add a new perspective on the role of ${\delta}$-catenin in enhancing EGFR/Erk1/2 signaling-mediated prostate cancer.

Effects of δ-Catenin on APP by Its Interaction with Presenilin-1

  • Dai, Weiye;Ryu, Taeyong;Kim, Hangun;Jin, Yun Hye;Cho, Young-Chang;Kim, Kwonseop
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. ${\beta}-Amyloid$ ($A{\beta}$) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that $A{\beta}$ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in $A{\beta}$ production, which initiates synaptic and neuronal damage. ${\delta}-Catenin$ is known to be bound to presenilin-1 (PS-1), which is the main component of the ${\gamma}-secretase$ complex that regulates APP cleavage. Because PS-1 interacts with both APP and ${\delta}-catenin$, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between ${\delta}-catenin$ and APP. However, we observed that ${\delta}-catenin$ could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, ${\delta}-catenin$ reduced PS-1-mediated stabilization of APP. The results suggest that ${\delta}-catenin$ can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.

Hair Growth Promotion by δ-Opioid Receptor Activation

  • Zheng, Mei;Choi, Nahyun;Balboni, Gianfranco;Xia, Ying;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.643-649
    • /
    • 2021
  • Literature has revealed that the delta opioid receptor (DOR) exhibited diverse pharmacological effects on neuron and skin. In the present study, we have investigated whether the activation of DOR has hair-growth promotion effects. Compared with other opioid receptor, DOR was highly expressed in epidermal component of hair follicle in human and rodents. The expression of DOR was high in the anagen phase, but it was low in the catagen and telogen phases during mouse hair cycle. Topical application of UFP-512, a specific DOR agonist, significantly accelerated the induction of the anagen in C3H mice. Topical application of UFP-512 also increased the hair length in hair organ cultures and promoted the proliferation and the migration of outer root sheath (ORS) cells. Similarly, pharmacological inhibition of DOR by naltrindole significantly inhibited the anagen transition process and decreased hair length in hair organ cultures. Thus, we further examined whether Wnt/β-catenin pathway was related to the effects of DOR on hair growth. We found that Wnt/β-catenin pathway was activated by UFP-512 and siRNA for β-catenin attenuated the UFP-512 induced proliferation and migration of ORS cells. Collectively, result established that DOR was involved in hair cycle regulation, and that DOR agonists such as UFP-512 should be developed for novel hair-loss treatment.

Use of Transgenic and Mutant Animal Models in the Study of Heterocyclic Amine-induced Mutagenesis and Carcinogenesis

  • Dashwood, Roderick H.
    • BMB Reports
    • /
    • v.36 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Heterocyclic amines (HCAs) are potent mutagens generated during the cooking of meat and fish, and several of these compounds produce tumors in conventional experimental animals. During the past 5 years or so, HCAs have been tested in a number of novel in vivo murine models, including the following: lacZ, lacI, cII, c-myc/lacZ, rpsL, and $gpt{\Delta}$ transgenics, $XPA^{-/-}$, $XPC^{-/-}$, $Msh2^{+/-}$, $Msh2^{-/-}$ and $p53^{+/-}$ knock-outs, Apc mutant mice ($Apc^{{\Delta}716}$, $Apc^{1638N}$, $Apc^{min}$), and $A33^{{\Delta}N{\beta}-cat}$ knock-in mice. Several of these models have provided insights into the mutation spectra induced in vivo by HCAs in target and non-target organs for tumorigenesis, as well as demonstrating enhanced susceptibility to HCA-induced tumors and preneoplastic lesions. This review describes several of the more recent reports in which novel animal models were used to examine HCA-induced mutagenesis and carcinogenesis in vivo, including a number of studies which assessed the inhibitory activities of chemopreventive agents such as 1,2-dithiole-3-thione, conjugated linoleic acids, tea, curcumin, chlorophyllin-chitosan, and sulindac.

Induction of Apoptosis in Human Colon Carcinoma HCT116 Cells Using a Water Extract of Lepidium virginicum L. (콩다닥냉이 추출물에 의한 HCT116 대장암세포의 사멸 유도에 관한 연구)

  • Chae, Yang-Hui;Shin, Dong-Yeok;Park, Cheol;Lee, Yong-Tae;Moon, Sung-Gi;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.5
    • /
    • pp.649-659
    • /
    • 2011
  • To examine the anti-cancer effects of Lepidium virginicum L., the anti-proliferative and pro-apoptotic effects of a water extract of L. virginicum leaves (WELVL) and of L. virginicum roots (WELVR) were investigated in HCT116 human colon carcinoma cells. The treatment of HCT116 cells with WELVL and WELVR resulted in the inhibition of growth and morphological changes in a concentration-dependent manner by inducing apoptosis. The growth inhibition and apoptosis induction by WELVR was stronger than that of WELVL thus, we determined that WELVR was the more optimal extract for this study. The increased apoptotic events in HCT116 cells caused by WELVR were associated with an up-regulation of Fas ligand, Bax, and Bad expression, a down-regulation of Bcl-2, Bcl-$_XL$, and Bid expression, and a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\psi}m$). WELVR treatment induced the proteolytic activation of caspase-3, -8, and -9, and the degradation of caspase-3 substrate proteins, such as poly (ADP-ribose) polymerase (PARP), ${\beta}$-catenin, and phospholipase C-${\gamma}1$ (PLC-${\gamma}1$). In addition, apoptotic cell death induced by WELVR was correlated with a down-regulation of inhibitors of the apoptosis protein (IAP) family, such as the X-linked inhibitor of apoptosis protein (XIAP), cIAP-1, and cIAP-2. These findings suggest that the WELVR-induced inhibition of cell proliferation is associated with the induction of apoptotic cell death. WELVR may be a potential chemotherapeutic agent for the control of HCT116 human colon carcinoma cells.