• Title/Summary/Keyword: ${\delta}^{15}N_{NH4}$

Search Result 12, Processing Time 0.024 seconds

Isotope Ratio of Mineral N in Pinus Densiflora Forest Soils in Rural and Industrial Areas: Potential Indicator of Atmospheric N Deposition and Soil N Loss (질소공급, 고추의 생육 및 수량에 대한 녹비작물 환원 효과)

  • Kwak, Jin-Hyeob;Lim, Sang-Sun;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Lee, Kye-Han;Han, Gwang-Hyun;Ro, Hee-Myong;Lee, Sang-Mo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Deposition of atmospheric N that is depleted in $^{15}N$ has shown to decrease N isotope ratio ($^{15}N/^{14}N$,expressed as ${\delta}^{15}N$) of forest samples such as tree rings, foliage, and total soil-N. However, its effect on ${\delta}^{15}N$ of mineral soil-N which is biologically active N pool has never been tested. In this study, ${\delta}^{15}N$ of mineral N($NH{_4}^+$ and $NO_3{^-}$) in forest soils from organic and two depths of mineral soil layers (0 to 20 cm and 20 to 40cm depth) of Pinus densiflora stands located at two distinct areas (rural and industrial areas) in southern Korea was analyzed to investigate if there is any difference in ${\delta}^{15}N$ of mineral N between these areas. We also evaluated potential N loss of the study sites using ${\delta}^{15}N$ of mineral N. Across the soil layers, the ${\delta}^{15}N$ of $NH{_4}^+$ ranged from +8.9 to +24.8‰ in the rural area and from +4.4 to +13.8‰ in the industrial area. Soils from organic layer (+4.4‰) and mineral layer between 0 and 20 cm (+13.8‰) of industrial area showed significantly lower ${\delta}^{15}N$ of $NH{_4}^+$ than those of rural area (+8.9 and +24.3‰, respectively), probably indicating the greater contribution of $^{15}N$-depleted $NH{_4}^+$ from atmospheric deposition to forest in the industrial area than in the rural area. Meanwhile, ${\delta}^{15}N$ of $NO_3{^-}$ was not different between the rural and industrial areas, probably because ${\delta}^{15}N$ of $NO_3{^-}$ is more likely to be altered by the N loss that causes $^{15}N$ enrichment of the remaining soil N pool. Compared with the ${\delta}^{15}N$ of soil mineral N reported by other studies (from -10.9 to +15.6‰ for $NH{_4}^+$ and -14.8 to +5.6‰ for $NO_3{^-}$), the ${\delta}^{15}N$ observed in our study was substantially high, suggesting that the study sites are more subject to the N loss. It was concluded that $NH{_4}^+$ rather than $NO_3{^-}$ can conserve the ${\delta}^{15}N$ signature of atmospheric N deposition in forest ecosystems.

Introduction of Kjeldahl Digestion Method for Nitrogen Stable Isotope Analysis (δ15N-NO3 and δ15NNH4) and Case Study for Tracing Nitrogen Source (Kjeldahl 증류법을 활용한 질산성-질소 및 암모니아성-질소 안정동위원소비 분석 및 질소오염원 추적 사례 연구)

  • Kim, Min-Seob;Park, Tae-Jin;Yoon, Suk-Hee;Lim, Bo-La;Shin, Kyung-Hoon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • Nitrogen (N) loading from domestic, agricultural and industrial sources can lead to excessive growth of macrophytes or phytoplankton in aquatic environment. Many studies have used nitrogen stable isotope ratios to identify anthropogenic nitrogen in aquatic systems as a useful method for studying nitrogen cycle. In this study to evaluate the precision and accuracy of Kjeldahl processes, two reference materials (IAEA-NO-3, N-1) were analyzed repeatedly. Measured the ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values of IAEA-NO-3 and IAEA-N-1 were $4.7{\pm}0.2$‰ and $0.4{\pm}0.3$‰, respectively, which are within recommended values of analytical uncertainties. Also, we investigated spatial patterns of ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ in effluent plumes from a waste water treatment plant in Han River, Korea. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values are enriched at downstream areas of water treatment plant suggesting that dissolved nitrogen in effluent plumes should be one of the main N sources in those areas. The current study clarifies the reliability of Kjeldahl analytical method and the usefulness of stable isotopic techniques to trace the contamination source of dissolved nitrogen such as nitrate and ammonia.

Determination of the Origin in both Dissolved Inorganic Nitrogen and Phytoplankton at the Lake Paldang using Stable Isotope Ratios (δ13C, δ15N, δ15N-NO3 and δ15N-NH4) (질산염 및 식물플랑크톤의 안정동위원소비를 이용한 팔당호 수계내의 질소원 기원 연구)

  • Kim, Min-Seob;Lee, Eun-Jeong;Yoon, Suk-Hee;Lim, Bo-La;Park, Jaeseon;Park, Hyunwoo;Chung, Hyen-Mi;Choi, Jong-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.452-458
    • /
    • 2017
  • The nitrogen isotope value in both ammonium and nitrate ion were determined at 9 stations during both June and August 2016, in order to understand the origin of DIN at the Han river. ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in 8 stations (CP, SB, MHC, P4, SJ, SBC, P2, SC) were no significant variation. However ${\delta}^{15}N-NO_3$ and ${\delta}^{15}N-NH_4$ values in KK (Kyeongan stream) showed significant different in comparison with 8 stations, with an apparent increase of nitrogen isotope values. These results indicate that antropogenic nitrogen source influence on KK station. Also the ${\delta}^{13}C$ and ${\delta}^{15}N$ isotope ratio of phytoplankton (Diatom and Cyanobacteria) in KK (Kyeongan stream) showed heavier values, compared to other study stations. These results indicate that nitrogen isotope value in phytoplankton effects by different nitrogen source in study sites. These results suggest that the analysis of stable isotope ratios is a simple but useful tool for the identification of dissolved inorganic nitrogen origin in aquatic environments.

Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure (화학비료, 가축분뇨 및 퇴비의 질소동위원소비)

  • Lim, Sang-Sun;Lee, Sang-Mo;Lee, Seung-Heon;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.453-457
    • /
    • 2010
  • To investigate the difference in N isotope ratio ($^{15}N/^{14}N$, expressed as ${\delta}^{15}N$) among N sources (synthetic fertilizer, livestock manure, and manure compost), eight synthetic fertilizer, four livestock manure, and thirty-seven compost samples were collected and analyzed for ${\delta}^{15}N$. The mean ${\delta}^{15}N$ values of N sources were $-1.5{\pm}0.5$‰ (range: -3.9 to +0.5‰) for synthetic fertilizer, $+6.3{\pm}0.4$‰ (+5.3 to +7.2‰) for manure, and $+16.0{\pm}0.4$‰ (+9.3 to +20.9‰) for compost. The lower ${\delta}^{15}N$ of synthetic fertilizer was attributed to its N source, atmospheric $N_2$ of which ${\delta}^{15}N$ is 0‰ Meanwhile, more $^{15}N$-enrichment of compost than manure was assumed to be resulted from N isotopic fractionation (faster loss of $^{14}N$-bearing compound than $^{15}N$) associated with N loss particularly via $NH_3$ volatilization during composting. Therefore, our study shows that ${\delta}^{15}N$ values could successfully serve in discriminating two major N sources (synthetic fertilizer and compost) in agricultural system.

Stable C and N Isotopes: A Tool to Interpret Interacting Environmental Stresses on Soil and Plant

  • Yun, Seok-In;Ro, Hee-Myong
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.262-271
    • /
    • 2008
  • Natural abundances of stable isotopes of nitrogen and carbon (${\delta}^{15}N$ and ${\delta}^{13}C$) are being widely used to study N and C cycle processes in plant and soil systems. Variations in ${\delta}^{15}N$ of the soil and the plant reflect the potentially variable isotope signature of the external N sources and the isotope fractionation during the N cycle process. $N_2$ fixation and N fertilizer supply the nitrogen, whose ${\delta}^{15}N$ is close to 0%o, whereas the compost as. an organic input generally provides the nitrogen enriched in $^{15}N$ compared to the atmospheric $N_2$. The isotope fractionation during the N cycle process decreases the ${\delta}^{15}N$ of the substrate and increases the ${\delta}^{15}N$ of the product. N transformations such as N mineralization, nitrification, denitrification, assimilation, and the $NH_3$ volatilization have a specific isotope fractionation factor (${\alpha}$) for each N process. Variation in the ${\delta}^{13}C$ of plants reflects the photosynthetic type of plant, which affects the isotope fractionation during photosynthesis. The ${\delta}^{13}C$ of C3 plant is significantly lower than, whereas the ${\delta}^{13}C$ of C4 plant is similar to that of the atmospheric $CO_2$. Variation in the isotope fractionation of carbon and nitrogen can be observed under different environmental conditions. The effect of environmental factors on the stomatal conductance and the carboxylation rate affects the carbon isotope fractionation during photosynthesis. Changes in the environmental factors such as temperature and salt concentration affect the nitrogen isotope fractionation during the N cycle processes; however, the mechanism of variation in the nitrogen isotope fractionation has not been studied as much as that in the carbon isotope fractionation. Isotope fractionation factors of carbon and nitrogen could be the integrated factors for interpreting the effects of the environmental factors on plants and soils.

Identification of pollutant sources using water quality and stable isotope ratios of inflow tributaries in the lower reaches of the Han-River

  • Hong, Jung-Ki;Lee, Bo-Mi;Son, Ju Yeon;Park, Jin-Rak;Lee, Sung Hye;Kim, Kap-Soon;Yu, Soon-Ju;Noh, Hye-ran
    • Analytical Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.65-76
    • /
    • 2019
  • Despite the expansion of sewage treatment facilities to reduce pollutants in the tributaries of the Han River, water pollution accidents such as fish deaths continue to frequently occur. The purpose of this study was to identify the pollutant sources using water quality and stable isotope ratio (${\delta}^{15}N$, ${\delta}^{13}C$, ${\delta}^{15}N-NH_4$, ${\delta}^{15}N-NO_3$) analysis results in the three inflow tributaries (Gulpocheon (GP), Anyangcheon (AY) and Sincheon (SC)) of the Han River. Water quality was analyzed in June and October from 2013 to 2017, and the results showed that the concentrations of nutrients, such as T-N, $NO_3-N$, and T-P, were increased at GP4, AY3, SC3, and SC4, which lie downstream of sewage treatment facilities. The results of ${\delta}^{15}N$ for June 2017 indicated that the source of nitrogen was sewage or livestock excreta at GP4 and SC4, and organic fertilizers at AY3 and SC3. ${\delta}^{15}N-NO_3$ results suggested that the source of nitrogen was related to organic sewage, livestock or manure at GP4, AY3 and SC4. Therefore, GP4 and SC4 were more influenced by effluent from sewage treatment facilities than by their tributaries, AY3 and SC3 were considered to be influenced more by their tributary than effluent from sewage treatment facilities. With the results of this study, the source of contamination (sewage treatment facility effluent) of river inflow downstream of Han River could be confirmed using water quality and stable isotope ratio.

River Water Quality Impact Assessment in an Intensive Livestock Farming Area During Rainfall Event using Physicochemical characteristics and Nitrogen Stable Isotopes (이화학적 특성과 질소 안정동위원소비를 활용한 강우시 가축사육 밀집 지역의 하천 수질 영향 평가)

  • Ryu, Hong-Duck;Baek, Un-Il;Kim, Sun-Jung;Kim, Deok-Woo;Kim, Chansik;Kim, Min-Seob;Shin, Dongseok;Lee, Jae-Kwan;Chung, Eu Gene
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.7-18
    • /
    • 2019
  • This study aimed to assess the impact of livestock excreta discharged from an Intensive Livestock Farming Area (ILFA) on river water quality during a rainfall event. The Bangcho River, which is one of the 7 tributaries in the Cheongmi River watershed, was the study site. The Cheongmi River watershed is the second largest area for livestock excreta discharge in Korea. Our results clearly showed that, during the rainfall event, the water quality of the Bangcho River was severely deteriorated due to the COD, $NH_4-N$, T-N, $PO_4-P$, T-P, and heavy metals (Cu, Zn, and Mn) in the run-off from nearby farmlands, where the soil comprised composted manure and unmanaged livestock excreta. In addition, stable isotope analysis revealed that most of nitrogen ($NH_4-N$ and $NO_3-N$) in the run-off was from the ammonium and nitrate in the livestock excreta. The values of ${\delta}^{15}N_{NH4}$ and ${\delta}^{15}N_{NO3}$ for the Bangcho River water sample, which was obtained from the downstream of mixing zone for run-off water, were lower than those for the run-off water. This indicates that there were other nitrogen sources upstream river in the river. It was assumed from ${\delta}^{15}N_{NH4}$ and ${\delta}^{15}N_{NO3}$ stable isotope analyses that these other nitrogen sources were naturally occurring soil nitrogen, nitrogen from chemical fertilizers, sewage, and livestock excreta. Therefore, the use of physicochemical characteristics and nitrogen stable isotopes in the water quality impact assessment enabled more effective analysis of nitrogen pollution from an ILFA during rainfall events.

Kinetics and Mechanism for Substitution of cis-[Co$(NH_3)_4$Cl($H_2O$)]$^{2+}$ and GlyOR (R = $C_2H_5$, $CH_3$, H) in Acidic Solution (Ⅰ) (산성용액내에서 cis-[Co$(NH_3)_4$Cl($H_2O$)]$^{2+}$ 와 GlyOR (R = $C_2H_5$, $CH_3$, H)과의 치환반응에 대한 속도론적 연구(Ⅰ))

  • Lee, Il Bong;Mun, Jin Hui;Park, Byeong Gak
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.10
    • /
    • pp.719-725
    • /
    • 1994
  • Kinetic studies were carried out for substitution reaction of $cis-[Co(NH_3)_4Cl(OH_2)]^{2+}(\mu$ = 0.75) with GlyOR (R = $C_2H_5$, $CH_3$, H) in pH 5 buffer solution at $20^{\circ}C$ by UV/Vis-spectrophotometry. We obtained cis-[Co$(NH_3)_4$Cl(glyOR)]$^{2+}$ as product. The reaction turns out to be first order for Co(III) and GlyOR, respectively. The rate constants are obtained as 9.21, 11.66 and 15.33 l${\cdot}\;mol^{-1}{\cdot}sec^{-1}$ for GlyOEt, GlyOMt and GlyOH, respectively. The activation parameters $E_a,\;{\Delta}H^{\neq}\;and\;{\Delta}S^{\neq}$ for GlyOEt were obtained as 65.77, 63.35 kJ/mol and -53.51(e.u.), respectively and were obtained as 70.91, 68.50 kJ/mol and -38.42(e.u.) for GlyOMt. In case of GlyOH, respectable values of 79.72, 77.30 kJ/mol and -26.59(e.u.) were obtained. On the basis of kinetic data and the observed activation parameters, we propose that the proper mechanism involves $S_N$2 step.

  • PDF

Synthesis of Fe3O4-δ Using FeC2O4·2H2O by Thermal Decomposition in N2 Atmosphere (N2분위기에서 FeC2O4·2H2O의 열분해에 의한 Fe3O4-δ합성)

  • Park, Won-Shik;Oh, Kyoung-Hwan;An, Suk-Jin;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.253-258
    • /
    • 2012
  • Activated magnetite ($Fe_3O_{4-{\delta}}$) was applied to reducing $CO_2$ gas emissions to avoid greenhouse effects. Wet and dry methods were developed as a $CO_2$ removal process. One of the typical dry methods is $CO_2$ decomposition using activated magnetite ($Fe_3O_{4-{\delta}}$). Generally, $Fe_3O_{4-{\delta}}$ is manufactured by reduction of $Fe_3O_4$ by $H_2$ gas. This process has an explosion risk. Therefore, a non-explosive process to make $Fe_3O_{4-{\delta}}$ was studied using $FeC_2O_4{\cdot}2H_2O$ and $N_2$. $FeSO_4{\cdot}7H_2O$ and $(NH_4)_2C_2O_4{\cdot}H_2O$ were used as starting materials. So, ${\alpha}-FeC_2O_4{\cdot}2H_2O$ was synthesized by precipitation method. During the calcination process, $FeC_2O_4{\cdot}2H_2O$ was decomposed to $Fe_3O_4$, CO, and $CO_2$. The specific surface area of the activated magnetite varied with the calcination temperature from 15.43 $m^2/g$ to 9.32 $m^2/g$. The densities of $FeC_2O_4{\cdot}2H_2O$ and $Fe_3O_4$ were 2.28 g/$cm^3$ and 5.2 g/$cm^3$, respectively. Also, the $Fe_3O_4$ was reduced to $Fe_3O_{4-{\delta}}$ by CO. From the TGA results in air of the specimen that was calcined at $450^{\circ}C$ for three hours in $N_2$ atmosphere, the ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was estimated. The ${\delta}$-value of $Fe_3O_{4-{\delta}}$ was 0.3170 when the sample was heat treated at $400^{\circ}C$ for 3 hours and 0.6583 when the sample was heat treated at $450^{\circ}C$ for 3 hours. $Fe_3O_{4-{\delta}}$ was oxidized to $Fe_3O_4$ when $Fe_3O_{4-{\delta}}$ was reacted with $CO_2$ because $CO_2$ is decomposed to C and $O_2$.

Rearing Density of a Flounder, Paralichthys olivaceus Juveniles in a Closed Recirculating Sea Water System - Possibility of High-density Rearing - (폐쇄순환여과시스템에서의 넙치, Paralichthys olivaceus 치어의 사육밀도 - 고밀도사육의 가능성 -)

  • CHANG Young Jin;YOO Sung Kyoo
    • Journal of Aquaculture
    • /
    • v.1 no.1
    • /
    • pp.13-24
    • /
    • 1988
  • In order to investigate a reasonable rearing density and the possibility of high-density rearing, flounder, Paralichthys olivaceus, juveniles of 2.53$\pm$0.24 cm in total length and 1.12$\pm$0.12 cm in body height were used in this study. The initial rearing density of them was 10 (D10), 20 (D20), 30 (D30) and 40 (D40) individuals per 137.75 $cm^2$ of bottom area, respectively. Ranges of water temperature and specific gravity during the rearing period of 65 days were $21.0\~27.0^{\circ}C$ and 1.024$\~$1.026, respectively, showing relatively higher values than that of natural sea water. Dissolved oxygen during the rearing period was 5.4$\~$7.5 ml/$\iota$ and inorganic nitrate was 0.07$\~$0.48 ppm in $NH_4^+-N$, 0.006$\~$0.33 ppm in $NO_2^{-}-N$ and 3.89$\~$34.06 ppm in $NO_3^{-}-N$. Growth in total length and body height of the juveniles in four rearing density at the end of the experiment was 8.17$\pm$0.80 em and 4.16$\pm$0.39 em, the highest in D20 and 7.72$\pm$0.40 cm and 3.94$\pm$0.21 cm, the lowest in D10. Significant differences, however, were not recognized between the slope values of growth regressions in four rearing density. Slope values of the relative growth between total length and body height of the juveniles in four rearing density were 0.5346, the highest in D10 and 0.5165, the lowest in D30, but there were no significant differences in those values. Survival rate of juveniles at the end of the experiment was $90\%$ in D10, D20 and D30, but that of D40 was $75\%$. The relationship between total length X body height (X) and body surface area of ocular side (Y) to calculate the rate of Y to bottom area in rearing tank (covering rate) as an indicator of rearing density was expressed by a linear regression, Y=0.5994X+0.1840. Covering rate in four rearing density at the end of the experiment was ranged 1.2$\~$4.1 times. Judging from the covering rate above 4 times, it seems to be possible rearing the flounder juveniles in high-density.

  • PDF