• Title/Summary/Keyword: ${\delta}$-closure

Search Result 66, Processing Time 0.021 seconds

The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy (7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향)

  • Kim, M.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

A CLASS OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS DEFINED BY CONVOLUTION

  • Ali Rosihan M.;Khan M. Hussain;Ravichandran V.;Subramanian K.G.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.179-188
    • /
    • 2006
  • For a given p-valent analytic function g with positive coefficients in the open unit disk $\Delta$, we study a class of functions $f(z) = z^p - \sum\limits{_{n=m}}{^\infty} a_nz^n(a_n{\geq}0)$ satisfying $$\frac 1 {p}{\Re}\;(\frac {z(f*g)'(z)} {(f*g)(z)})\;>\;\alpha\;(0{\leq}\;\alpha\;<\;1;z{\in}{\Delta})$$ Coefficient inequalities, distortion and covering theorems, as well as closure theorems are determined. The results obtained extend several known results as special cases.

An Experimental on the Evalution of Fatigue Crack Propagation of Carbon Steel (탄소강의 피로균열 진전거동 평가에 관한 실험적 연구)

  • 김희송;안병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.938-946
    • /
    • 1989
  • Using the CT specimen of carbon steel(SM45C), we estimated the fatigue crack propagation behavior in stable crack propagation range. Furthermore the fatigue crack propagation rate, Acoustic Emission(AE) count rate, and fractography characteristics were also compared among others. The following results were confirmed by experimental observation. Near-threshold stress intensity factor range(.DELTA. $K_{th}$) is influenced by stress ratio but not at the upper limit of stable crack propagation range. As stress intensity factor range(.DELTA.K) and(or) stress amplitude increase (s), both crack propagation rate(da/dN) and AE count rate(dn/dN) increase. Effective stress intensity factor range(.DELTA. $K_{off}$) determined from the crack closure point measurement by AE method is useful for the evaluation of fatigue crack propagation rate. Fractography in stable crack propagation range showed striation, and agreed with the crack propagation rate obtained either by experiment of by the results of microscopic measurements.s.

Fatigue Crack Propagation Characteristics in SA 516-70 Steel for Pressure Vessels at Low Temperature (SA 516-70 압력용기용강의 저온피로 크랙전파 특성에 관한 연구)

  • Park, K.D.;Cha, S.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.2
    • /
    • pp.51-56
    • /
    • 1999
  • Fatigue crack propagation rates and characteristics of the SA516-70 steel which is used for the low temperature pressure vessels, were studied in the room temperature of $10^{\circ}C$ and low temperature ranges of $-10^{\circ}C,\;-30^{\circ}C,\;-50^{\circ}C,\;and\;-70^{\circ}C$ with stress ratio of R=0.05. The obtained experimental results are as follows; 1) In the logarithmic relationship between the fatigue crack propagation rate(da/dN) and stress intensity factor K, the linear relationship was obtained up to da/dN > $8{\times}10^3$ mm/cycle in the same of room temperature, but in low temperature case, the relationship was extended to the range of low crack propagation rate. 2) The lower limit stress intensity factor of SA516-70 ${\Delta}K_{th}\;was\;23MPa\sqrt{m}$ and in the case of low temperature $-50^{\circ}C\;and\;-70^{\circ}C$, the crack propagation rate da/dN which showed a linear relation, reached rapidly to the ${\Delta}K_{th}$. As the results, the crack propagation rates of $-50^{\circ}C\;and\;-70^{\circ}C$ were lower than that of room temperature and according to the testing temperature the rates were decreased rapidly to the ${\Delta}K_{th}$. 3) On the relationship between the stress intensity factor ${\Delta}K$ and the track propagation cycle, the stress intensity factors of low cycle region was rapidly increased at low temperature, but ${\Delta}K$ was increased rapidly at room temperature of high cycle. 4) On the relationship between the fatigue crack propagation rate and cycle, the fatigue crack propagation rate showed higher gradient in the room temperature than the low temperature due to the increment in ductility at low temperature.

  • PDF

Fatigue Crack Propagation Characteristics in ASTM 516/60 Steel at Low Temperature (ASTM 516-60 강의 저온피로 크랙전파 특성에 관한 연구)

  • 박경동;김정호
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.240-245
    • /
    • 2000
  • Fatigue crack propagation rates and characteristics of the SA516-60 steel which is used for the low temperature pressure vessels, were studied in the room temperature of $25^{\circ}C$ and low temperature ranges of $10^{\circ}C,\; -10^{\circ}C,\; -30^{\circ}C,\; -50^{\circ}C, \;and\; -70^{\circ}C4 with stress ratio of R=0.05. The obtained experimental results are as follows; 1) In the logarithmic relationship between the fatigue crack propagation rate(da/dN) and stress intensity factor K, the linear relationship was obtained up to da/dN 〉$8\times10^{-3}$/mm/cycle in the same of room temperature, but in low temperature case, the relationship was extended to the range of crack propagation rate. 2) The lower limit stress intensity factor of SA516-60 $\DeltaK_{th}$ was 15.8MPa and in the case of low temperature $-50^{\circ}C\; and\; -70^{\circ}C$, the crack propagation rate da/dN which showed a linear relation, reached rapidly to the $\DeltaK_{th}$/. As the results, the crack propagation rates of $-50^{\circ}C\; and\; -70^{\circ}C$ were lower than that of room temperature and according to the testing temperature the rates were decreased rapidly to the $\DeltaK_{th}$/. 3) On the relationship between the stress intensity factor $\DeltaK$ and the crack propagation cycle, the stress intensity factors of low cycle region was rapidly increased at low temperature, but $\DeltaK$ was increased rapidly at room temperature of high cycle. 4) On the relationship between the fatigue crack propagation rate and cycle, the fatigue crack propagation rate showed higher gradient in the room temperature than the low temperature due to the increment in ductility at low temperature.

  • PDF

Effect of Specimen Thickness on Fatigue Crack Growth (피로균열진전에 미치는 시편 두께의 영향)

  • 김재훈;김영균;윤인수
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 1998
  • The effect of specimen thickness on fatigue crack growth behavior has been carried out by compact tension specimens of thickness of 3mm, 10mm and 25mm for maraging steel and Al 7075-T6. The closure points were determined during the test by means of a clip-gage situated at the notch mouth. Specimen thickness have no apparent influence on the fatigue crack growth rate of maraging steel, but the crack growth rate of 25mm thickness specimen for Al 7075-T6 is faster than that of 3 and 10mm specimens. The difference of crack growth rates can be successfully explained by considering the different stress state of plane strain and plain stress due to the variation of specimen thickness. Also the crack opening ratio of 25mm specimen is greater than those of 3 and 10mm specimens. When a side groove is introduced in a 10mm specimen, the crack growth rate is approximately similar to that of 25mm specimen. The effective thickness expression of $B_e=B_o-(B_o-B_N)^2B_o$ is the most appropriate to evaluate the crack growth rate of side-grooved specimen. Fatigue crack growth rates can be well described by $\Delta K_{eff}$ of the crack closure points in regardless of all thickness and side-grooved specimens.

  • PDF

A Study on Fatigue Crack Propagation Behavior of Pressure Vessel Steel SA516/70 at High Temperature. (압력용기용 SA516/70 강의 고온피로균열 진전거동에 대한 연구)

  • 박경동;김정호;윤한기;박원조
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.147-153
    • /
    • 2000
  • The fatigue crack propagation behavior of the SA516/70 steel which is used for pressure vessels was examined experimentally at room temperature, $150^{\circ}C$, $250^{\circ}C$ and $370^{\circ}C$ with stress ratio of R=0.1 and 0.3. The fatigue crack propagation rate da/dN related with the stress intensity factor range $\Omega\textrm{K}$ was influenced by the stress ratio within the stable growth of fatigue crack(Region II) with an increase in $\Omega\textrm{K}$. The resistance to the fatigue crack growth at high temperature is higher in comparison with that at room temperature, and the resistance attributed to the extent of plasticity-induced by compressive residual stress according to the cyclic loads. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and high temperatures are mainly explained by the crack closure and oxide-induced by high temperature.

  • PDF

The behaviour of strength and fatigue crack propagation of various steels in steel bridges (철강구조물 부재의 강도평가 및 피로균열진전거동)

  • Han, Seung-Ho;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1694-1701
    • /
    • 1997
  • The residual safety assessment of steel structures, an important subject in practice, is given to much attention. Life prediction in the planning course of steel structures under fatigue loading is mainly based on fatigue design criteria resulting from S-N curves. But for any reason cracks have to be assumed due to fabrication failures or fatigue loading in service which can lead total fracture of structures. The life prediction can be carried out by means of fracture mechanics using Paris-Erdogan equation($da/dN=C {\cdot}{\Delta}K^m$). The paper presents results from charpy test to interpret transition behaviour of charpy energy($A_V$) in a wide temperature range and from constant-load-amplitude test to measure fatigue crack growth of various steels widely used in steel bridges since beginning of 20 centuries in Europe. In the normal service temperature range of steel bridges, the steel S355M shows higher maximum charpy energy($A_{Vmax}$) and lower transition temperature($T_{AVmax/2}$) than other steels considered. The C and m of Paris-Erdogan equation on the steels appear to be correlated, and to be affected by the R-ratios due to crack closure, especially at a low fatigue crack growth rate. Scanning electron microscopy analysis was carried out to interpret an influence of the crack closure effects on the correlation of C and m.

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

Fatigue Crack Growth Characteristics of $SiC_p/Al-Si$ Alloy Composites for Automotive Structures (자동차구조용 $SiC_p/Al-Si$복합재의 피로균열 진전특성에 대한 연구)

  • Koh Seungkee;Lee Haemoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.174-181
    • /
    • 2005
  • In order to investigate the behavior of fatigue crack growth of SiC-particulate- reinforced Al-Si alloy composites, fatigue tests using single edge notched tension(SENT) specimens were performed. Composite materials were manufactured by using both permanent die casting and extrusion processes with different volume fractions of $10\%\;and\;20\%$. $SiC_p-reinfurced$ Al-Si composites showed the increased levels of threshold stress intensity factor range, ${\Delta}K_{th}$, for the increased volume fractions of SiC particles, which implies the increased fatigue crack growth resistance at the threshold or low ${\Delta}K$ levels, compared to the unreinforced Al-Si alloy. In the Paris region, however, the composites showed the increased rate of crack growth resulting in the unfavorable effects on the fatigue crack growth resistance. Critical stress intensity factor range at unstable crack growth leading to final fracture decreased as the volume fraction of SiC particle increased, because of the reduced fracture toughness of the composites. Extruded materials showed higher threshold and critical values than the cast materials.