A CLASS OF MULTIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS DEFINED BY CONVOLUTION

ROSIHAN M. ALI, M. HUSSAIN KHAN, V. RAVICHANDRAN, AND K. G. SUBRAMANIAN

ABSTRACT. For a given *p*-valent analytic function g with positive coefficients in the open unit disk Δ , we study a class of functions $f(z) = z^p - \sum_{n=m}^{\infty} a_n z^n$ $(a_n \ge 0)$ satisfying

$$\frac{1}{p}\Re\left(\frac{z(f\ast g)'(z)}{(f\ast g)(z)}\right)>\alpha\quad(0\leq\alpha<1;z\in\Delta).$$

Coefficient inequalities, distortion and covering theorems, as well as closure theorems are determined. The results obtained extend several known results as special cases.

1. Introduction

Let $\mathcal{A}(p,m)$ be the class of all p-valent analytic functions $f(z) = z^p + \sum_{n=m}^{\infty} a_n z^n$ defined on the open unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ and let $\mathcal{A} := \mathcal{A}(1,2)$. For two functions $f(z) = z^p + \sum_{n=m}^{\infty} a_n z^n$ and $g(z) = z^p + \sum_{n=m}^{\infty} b_n z^n$ in $\mathcal{A}(p,m)$, their convolution (or Hadamard product) is defined to be the function $(f * g)(z) := z^p + \sum_{n=m}^{\infty} a_n b_n z^n$.

Let T(p,m) be the subclass of $\mathcal{A}(p,m)$ consisting of functions of the form

(1.1)
$$f(z) = z^p - \sum_{n=m}^{\infty} a_n z^n \quad (a_n \ge 0 \text{ for } n \ge m)$$

Received December 7, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 30C45.

Key words and phrases: starlike function, convolution, subordination, negative coefficients.

The authors R. M. Ali and V. Ravichandran acknowledged support from an IRPA grant 09-02-05-00020 EAR.

and let T:=T(1,2). A function $f(z)\in T(p,m)$ is called a function with negative coefficients. The subclass of T(p,m) consisting of multivalent starlike (convex) functions of order α is denoted by $TS^*(p,m,\alpha)$ ($TC(p,m,\alpha)$). The classes $TS^*(\alpha):=TS^*(1,2,\alpha)$ and $TC(\alpha):=TC(1,2,\alpha)$ were studied by Silverman [4]. In this article, we study the class $TS_q^*(p,m,\alpha)$ introduced in the following:

DEFINITION 1. Let $g(z) = z^p + \sum_{n=m}^{\infty} b_n z^n$ be a fixed function in $\mathcal{A}(p,m)$ with $b_n > 0$ $(n \geq m)$. The class $TS_g^*(p,m,\alpha)$ consists of functions f(z) of the form (1.1) that satisfies

$$(1.2) \qquad \frac{1}{p} \Re \left(\frac{z(f * g)'(z)}{(f * g)(z)} \right) > \alpha \quad (0 \le \alpha < 1; z \in \Delta).$$

Several well-known subclasses of functions are special cases of our class for suitable choices of g(z) when p=1 and m=2. For example, if g(z):=z/(1-z), the class $TS_g^*(p,m,\alpha)$ is the class $TS^*(\alpha)$ of starlike functions with negative coefficients of order α introduced and studied by Silverman [4]. If $g(z):=z/(1-z)^2$, the class $TS_g^*(p,m,\alpha)$ is the class $TC(\alpha)$ of convex functions with negative coefficients of order α (See Silverman [4]). If $g(z):=\frac{z}{(1-z)^{\lambda+1}}$, $(\lambda > -1)$, p=1, the class $TS_g^*(p,m,\alpha)$ reduces to the class

$$T_{\lambda}(\alpha) := \left\{ f \in T : \Re \frac{z(D^{\lambda}f(z))'}{D^{\lambda}f(z)} > \alpha, \quad (z \in \Delta, \lambda > -1, \alpha < 1) \right\},$$

introduced and studied by Ahuja [1] where D^{λ} denotes the Ruscheweyh derivatives of order λ . When $g(z) := z + \sum_{n=2}^{\infty} n^{l} z^{n}$, the class $TS_{g}^{*}(p, m, \alpha)$ is the class $TS_{l}^{*}(\alpha)$ where

$$TS_l^*(\alpha) := \left\{ f \in T : \Re\left(\frac{z(\mathcal{D}^l f(z))'}{\mathcal{D}^l f(z)}\right) > \alpha \right\}.$$

(Here \mathcal{D}^l denotes the Salagean derivative of order l [3]).

A function $f \in \mathcal{A}(p,m)$ is β -Pascu convex of order α if

$$\frac{1}{p}\Re\left(\frac{(1-\beta)zf'(z)+\frac{\beta}{p}z(zf'(z))'}{(1-\beta)f(z)+\frac{\beta}{p}zf'(z)}\right)>\alpha\quad(\beta\geq0;\ 0\leq\alpha<1).$$

We denote by $TPC(p, m, \alpha, \beta)$ the subclass of T(p, m) consisting of β -Pascu convex functions of order α . Clearly $TS^*(\alpha)$ and $TC(\alpha)$ are special cases of $TPC(1, 2, \alpha, \beta)$.

In this paper, we obtain the coefficient inequalities, distortion and covering theorems, as well as closure theorems for functions in the class

 $TS_g^*(p, m, \alpha)$. Several known results are easily deduced from ours, for example, results for the classes $T_{\lambda}(\alpha)$ and $TS_l^*(\alpha)$. Additionally, we present results for the α -Pascu convex functions that unifies corresponding results for $TS^*(\alpha)$ and $TC(\alpha)$.

2. The class $TS_a^*(p, m, \alpha)$

We first prove a necessary and sufficient condition for functions to be in $TS_q^*(p, m, \alpha)$ in the following:

THEOREM 1. A function f(z) given by (1.1) is in $TS_g^*(p, m, \alpha)$ if and only if

(2.1)
$$\sum_{n=m}^{\infty} (n - p\alpha) a_n b_n \le p(1 - \alpha).$$

Proof. If $f \in TS_g^*(p, m, \alpha)$, then (2.1) follows from (1.2) by letting $z \to 1$ — through real values. To prove the converse, assume that (2.1) holds. Then by making use of (2.1), we obtain

$$\left| \frac{z(f * g)'(z) - p(f * g)(z)}{(f * g)(z)} \right| \le \frac{\sum_{n=m}^{\infty} (n-p)a_n b_n}{1 - \sum_{n=m}^{\infty} a_n b_n} \le p(1-\alpha)$$
 or $f \in TS_q^*(p, m, \alpha)$.

COROLLARY 1. A function f(z) given by (1.1) is in $TPC(p, m, \alpha, \beta)$ if and only if

$$\sum_{n=m}^{\infty} (n - p\alpha)[(1 - \beta)p + \beta n]a_n \le p^2(1 - \alpha).$$

As an immediate application of Theorem 1, we obtain the following:

THEOREM 2. Let f(z) be given by (1.1). If $f \in TS_g^*(p, m, \alpha)$, then

$$a_n \le \frac{p(1-\alpha)}{(n-p\alpha)b_n}$$

with equality only for functions of the form

$$f_n(z) = z^p - \frac{p(1-\alpha)}{(n-p\alpha)b_n}z^n.$$

Proof. If $f \in TS_q^*(p, m, \alpha)$, then, by making use of (2.1), we obtain

$$(n-p\alpha)a_nb_n \le \sum (n-p\alpha)a_nb_n \le p(1-\alpha)$$

182 or

$$a_n \le \frac{p(1-\alpha)}{(n-p\alpha)b_n}$$
.

Clearly for $f_n(z) = z^p - \frac{p(1-\alpha)}{(n-p\alpha)b_n}z^n \in TS_g^*(p,m,\alpha)$, we have

$$a_n = \frac{p(1-\alpha)}{(n-p\alpha)b_n}.$$

COROLLARY 2. Let f(z) be given by (1.1). If $f \in TPC(p, m, \alpha, \beta)$, then

$$a_n \le \frac{p^2(1-\alpha)}{(n-p\alpha)[(1-\beta)p+\beta n]}$$

with equality only for functions of the form

$$f_n(z) = z^p - \frac{p^2(1-\alpha)}{(n-p\alpha)[(1-\beta)p + \beta n]}z^n.$$

By making use of Theorem 1, we obtain the following growth estimate for functions in the class $TS_q^*(p, m, \alpha)$.

THEOREM 3. If $f \in TS_q^*(p, m, \alpha)$, then

$$r^{p} - \frac{p(1-\alpha)}{(m-p\alpha)b_{m}}r^{m} \le |f(z)| \le r^{p} + \frac{p(1-\alpha)}{(m-p\alpha)b_{m}}r^{m}, \quad |z| = r < 1,$$

provided $b_n \geq b_m$ $(n \geq m)$. The result is sharp with equality for

(2.2)
$$f(z) = z^p - \frac{p(1-\alpha)}{(m-p\alpha)b_m} z^m$$

at z = r and $z = re^{\frac{i\pi(2k+1)}{m-p}}$ $(k \in \mathbb{Z})$.

Proof. Let |z| = r. Since $f(z) = z^p - \sum_{n=m}^{\infty} a_n z^n$, we have

$$|f(z)| \le r^p + \sum_{n=m}^{\infty} a_n r^m$$

$$(2.3) \leq r^p + r^m \sum_{n=m}^{\infty} a_n.$$

Since for $n \geq m$,

$$(m-p\alpha)b_m \le (n-p\alpha)b_n,$$

using (2.1) yields

$$b_m(m-p\alpha)\sum_{n=m}^{\infty}a_n \leq \sum_{n=m}^{\infty}(n-p\alpha)a_nb_n \leq p(1-\alpha)$$

or

(2.4)
$$\sum_{n=-\infty}^{\infty} a_n \le \frac{p(1-\alpha)}{(m-p\alpha)b_m}.$$

This together with (2.3) shows that

$$|f(z)| \le r^p + r^m \frac{p(1-\alpha)}{(m-p\alpha)b_m}$$

and similarly we have

$$|f(z)| \ge r^p - r^m \frac{p(1-\alpha)}{(m-p\alpha)b_m}$$

Let $\frac{p(1-\alpha)}{(m-p\alpha)b_m} < 1$. By letting $r \to 1-$ in Theorem 3, we see that functions $f \in TS_g^*(p,m,\alpha)$ map the unit disk Δ onto regions that contained the disk $|w| < 1 - \frac{p(1-\alpha)}{(m-p\alpha)b_m}$.

COROLLARY 3. If $f \in TPC(p, m, \alpha, \beta)$, then

$$r^{p} - \frac{p^{2}(1-\alpha)}{(m-p\alpha)[(1-\beta)p+\beta m]}r^{m}$$

$$\leq |f(z)|$$

$$\leq r^{p} + \frac{p^{2}(1-\alpha)}{(m-p\alpha)[(1-\beta)p+\beta m]}r^{m}, \quad |z| = r < 1.$$

The result is sharp for

(2.5)
$$f(z) = z^p - \frac{p^2(1-\alpha)}{(m-p\alpha)[(1-\beta)p + \beta m]} z^m.$$

We now prove the distortion theorem for the functions in $TS_g^*(p, m, \alpha)$ in the following:

Theorem 4. If $f \in TS_q^*(p, m, \alpha)$, then

$$\begin{split} pr^{p-1} - \frac{mp(1-\alpha)}{(m-p\alpha)b_m} r^{m-1} &\leq |f'(z)| \\ &\leq pr^{p-1} + \frac{mp(1-\alpha)}{(m-p\alpha)b_m} r^{m-1}, \ |z| = r < 1, \end{split}$$

provided $b_n \geq b_m$. The result is sharp for f(z) given by (2.2).

Proof. For a function $f \in TS_g^*(p, m, \alpha)$, it follows from (2.1) and (2.4) that

$$\sum_{n=m}^{\infty} n a_n \le \frac{mp(1-\alpha)}{(m-p\alpha)b_m}.$$

Since the remaining part of the proof is similar to the proof of Theorem 3, we omit the details. \Box

COROLLARY 4. If $f \in TPC(p, m, \alpha, \beta)$, then

$$pr^{p-1} - \frac{mp^{2}(1-\alpha)}{(m-p\alpha)[(1-\beta)p+\beta m]}r^{m-1}$$

$$\leq |f'(z)|$$

$$\leq pr^{p-1} + \frac{mp^{2}(1-\alpha)}{(m-p\alpha)[(1-\beta)p+\beta m]}r^{m-1}$$

where |z| = r < 1. The result is sharp for f(z) given by (2.5).

We shall now prove the following closure theorems for the class $TS_g^*(p, m, \alpha)$.

THEOREM 5. Let $\lambda_k \geq 0$ for k = 1, 2, ..., l and $\sum_{k=1}^{l} \lambda_k \leq 1$. If the functions $F_k(z)$ defined by

$$(2.6) F_k(z) = z^p - \sum_{n=m}^{\infty} f_{n,k} z^n$$

are in the class $TS_g^*(p, m, \alpha)$ for every k = 1, 2, ..., l, then the function f(z) defined by

$$f(z) = z^p - \sum_{n=m}^{\infty} \left(\sum_{k=1}^{l} \lambda_k f_{n,k}\right) z^n$$

is in the class $TS_g^*(p, m, \alpha)$.

Proof. Since $F_k(z) \in TS_g^*(p, m, \alpha)$, it follows from Theorem 2.1 that

(2.7)
$$\sum_{n=m}^{\infty} (n - p\alpha) f_{n,k} b_n \le p(1 - \alpha)$$

for every $k = 1, 2, \dots, l$. Hence

$$\sum_{n=m}^{\infty} (n - p\alpha) \left(\sum_{k=1}^{l} \lambda_k f_{n,k} \right) b_n = \sum_{k=1}^{l} \lambda_k \left(\sum_{n=m}^{\infty} (n - p\alpha) f_{n,k} b_n \right)$$

$$\leq p(1 - \alpha) \sum_{k=1}^{l} \lambda_k$$

$$\leq p(1 - \alpha).$$

By Theorem 1, it follows that $f(z) \in TS_q^*(p, m, \alpha)$.

COROLLARY 5. The class $TS_g^*(p, m, \alpha)$ is closed under convex linear combinations.

THEOREM 6. Let $F_p(z) := z^p$ and $F_n(z) := z^p - \frac{p(1-\alpha)}{(n-p\alpha)b_n}z^n$ for $n = m, m+1, \ldots$ The function $f(z) \in TS_g^*(p, m, \alpha)$ if and only if f(z) can be expressed in the form

(2.8)
$$f(z) = \lambda_p z^p + \sum_{n=m}^{\infty} \lambda_n F_n(z)$$

where $\lambda_n \geq 0$ for n = p, m, m + 1, ... and $\lambda_p + \sum_{n=m}^{\infty} \lambda_n = 1$.

Proof. If the function f(z) is expressed in the form given by (2.8), then

$$f(z) = z^p - \sum_{n=m}^{\infty} \frac{\lambda_n p(1-\alpha)}{(n-p\alpha)b_n} z^n$$

and for this function, we have

$$\sum_{n=m}^{\infty} (n-p\alpha) \frac{\lambda_n p(1-\alpha)b_n}{(n-p\alpha)b_n} = \sum_{n=m}^{\infty} p(1-\alpha)\lambda_n = p(1-\alpha)(1-\lambda_p) \le p(1-\alpha).$$

By Theorem 1, we have $f(z) \in TS_q^*(p, m, \alpha)$.

Conversely, let $f(z) \in TS_g^*(p, m, \alpha)$. From Theorem 2, we have

$$a_n \le \frac{p(1-\alpha)}{(n-p\alpha)b_n}$$
 for $n=m,m+1,\ldots$

Therefore by taking

$$\lambda_n := \frac{(n - p\alpha)a_n b_n}{p(1 - \alpha)}$$
 for $n = m, m + 1, \dots$

and

$$\lambda_p := 1 - \sum_{n=m}^{\infty} \lambda_n,$$

186

we see that f(z) is of the form given by (2.8).

THEOREM 7. Let $h(z) = z^p + \sum_{n=m}^{\infty} h_n z^n$ with $h_n > 0$.

(i) Let $(n-p\alpha)b_n \geq (1-\alpha)nh_n$ and

$$\beta := \inf_{n \ge m} \left[\frac{(n - p\alpha)b_n - (1 - \alpha)nh_n}{(n - p\alpha)b_n - (1 - \alpha)ph_n} \right].$$

 $\begin{array}{l} \text{If } f \in TS_g^*(p,m,\alpha), \text{ then } f \in TS_h^*(p,m,\beta). \\ \text{(ii)} \ \ \text{If } f \in TS_g^*(p,m,\alpha), \text{ then } f \in TS_h^*(p,m,\beta) \text{ in } |z| < r(\alpha,\beta), \text{ where} \end{array}$

$$r(\alpha,\beta) := \min \left\{ 1, \inf_{n \geq m} \left[\frac{(n-p\alpha)}{(n-p\beta)} \frac{(1-\beta)}{(1-\alpha)} \frac{b_n}{h_n} \right]^{\frac{1}{n-p}} \right\}.$$

Proof. (i) From the definition of β , it follows that

$$\beta \le \frac{(n - p\alpha)b_n - (1 - \alpha)nh_n}{(n - p\alpha)b_n - (1 - \alpha)ph_n}$$

or

$$\frac{(n-p\beta)h_n}{1-\beta} \le \frac{(n-p\alpha)b_n}{1-\alpha}$$

and therefore, in view of (2.1),

$$\sum_{n=m}^{\infty} \frac{(n-p\beta)}{p(1-\beta)} a_n h_n \le \sum_{n=m}^{\infty} \frac{(n-p\alpha)}{p(1-\alpha)} a_n b_n \le 1.$$

This completes the proof of (i).

(ii) It is easy to see that f satisfies

$$\frac{1}{p}\Re\left(\frac{z(f*h)'(z)}{(f*h)(z)}\right) > \beta \quad (|z| < r)$$

if and only if

(2.9)
$$\sum_{n=m}^{\infty} (n-p\beta)a_n h_n r^{n-p} \le p(1-\beta).$$

From the definition of $r(\alpha, \beta)$, we have

(2.10)
$$\frac{(n-p\beta)}{p(1-\beta)} h_n r^{n-p} \le \frac{(n-p\alpha)}{p(1-\alpha)} b_n$$

and the result now follows from (2.10), (2.9) and (2.1).

Theorem 7 contains several results. For example, when p=1, m=2, h(z)=z/(1-z) and $g(z)=z/(1-z)^2$, the class $TS_g^*(1,2,\alpha)$ consists of convex functions of order α in T. Theorem 7(i) yields the order of starlikeness, i.e., $\beta=2/(3-\alpha)$. Similarly, when p=1, m=2, $h(z)=z/(1-z)^2$, g(z)=z/(1-z), and $\beta=0$, we get the radius of convexity for starlike functions of order α in T. These results were proved by Silverman [4].

We now prove that the class $TS_g^*(p, m, \alpha)$ is closed under convolution with certain functions and give an application of this result to show that the class $TS_g^*(p, m, \alpha)$ is closed under the familiar Bernardi integral operator.

THEOREM 8. Let $h(z) = z^p + \sum_{n=m}^{\infty} h_n z^n$ be analytic in Δ with $0 \le h_n \le 1$. If $f(z) \in TS_q^*(p, m, \alpha)$, then $(f * h)(z) \in TS_q^*(p, m, \alpha)$.

Proof. The result follows by a straight forward application of Theorem 1. \Box

The generalized Bernardi integral operator is defined by

(2.11)
$$F(z) = \frac{c+p}{z^c} \int_0^z t^{c-1} f(t) dt \quad (c > -1; z \in \Delta).$$

Since

$$F(z) = f(z) * \left(z^p + \sum_{n=m}^{\infty} \frac{c+p}{c+n} z^n\right),$$

we have the following:

COROLLARY 6. If $f(z) \in TS_g^*(p, m, \alpha)$, then F(z) given by (2.11) is also in $TS_q^*(p, m, \alpha)$.

References

- [1] O. P. Ahuja, Hadamard products of analytic functions defined by Ruscheweyh derivatives, in: Current topics in analytic function theory, 13–28,(H M Srivastava, S Owa, editors), World Sci. Publishing, Singapore, 1992.
- [2] V. Ravichandran, On starlike functions with negative coefficients, Far East J. Math. Sci. 8 (2003), no. 3, 359–364.
- [3] G. St. Sălăgean, Subclasses of univalent functions, in Complex analysis: fifth Romanian-Finnish seminar, Part I (Bucharest, 1981), 362–372, Lecture Notes in Mathematics 1013, Springer-Verlag, Berlin and New York, 1983.
- [4] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.

ROSIHAN M. ALI, SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITI SAINS MALAYSIA, 11800 USM, PENANG, MALAYSIA

E-mail: rosihan@cs.usm.my

M. Hussain Khan, Department of Mathematics, Islamiah College, Vani ambadi 635 751, India

V. RAVICHANDRAN, SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITI SAINS MAL AYSIA, 11800 USM, PENANG, MALAYSIA *E-mail*: vravi@cs.usm.my

K. G. Subramanian, Department of Mathematics, Madras Christian College, Tambaram, Chennai-600 059, India

 $E ext{-}mail:$ kgsmani@vsnl.net