• Title/Summary/Keyword: ${\cal{I}}-dense$

Search Result 2, Processing Time 0.016 seconds

Properties of Topological Ideals and Banach Category Theorem

  • Devi, V. Renuka;Sivaraj, D.;Chelvam, T. Tamizh
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.199-209
    • /
    • 2005
  • An ideal space is ${\cal{I}}-resolvable$ if it has two disjoint ${\cal{I}}-dense$ subsets. We answer the question: If X is ${\cal{I}}-resolvable$, then is X (${\cal{I}}\;{\cup}\;{\cal{N}$)-resolvable?, posed by Dontchev, Ganster and Rose. We give three generalizations of the well known Banach Category Theorem and deduce the Banach category Theorem as a corollary. Characterizations of completely codense ideals and ${\cal{I}-locally$ closed sets are given and their properties are discussed.

  • PDF

WEAKLY DENSE IDEALS IN PRIVALOV SPACES OF HOLOMORPHIC FUNCTIONS

  • Mestrovic, Romeo;Pavicevic, Zarko
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.397-420
    • /
    • 2011
  • In this paper we study the structure of closed weakly dense ideals in Privalov spaces $N^p$ (1 < p < $\infty$) of holomorphic functions on the disk $\mathbb{D}$ : |z| < 1. The space $N^p$ with the topology given by Stoll's metric [21] becomes an F-algebra. N. Mochizuki [16] proved that a closed ideal in $N^p$ is a principal ideal generated by an inner function. Consequently, a closed subspace E of $N^p$ is invariant under multiplication by z if and only if it has the form $IN^p$ for some inner function I. We prove that if $\cal{M}$ is a closed ideal in $N^p$ that is dense in the weak topology of $N^p$, then $\cal{M}$ is generated by a singular inner function. On the other hand, if $S_{\mu}$ is a singular inner function whose associated singular measure $\mu$ has the modulus of continuity $O(t^{(p-1)/p})$, then we prove that the ideal $S_{\mu}N^p$ is weakly dense in $N^p$. Consequently, for such singular inner function $S_{\mu}$, the quotient space $N^p/S_{\mu}N^p$ is an F-space with trivial dual, and hence $N^p$ does not have the separation property.