• Title/Summary/Keyword: ${\beta}-amyrin\\\synthase$

Search Result 8, Processing Time 0.023 seconds

Molecular Cloning and Characterization of Wound-inducible Beta-amyrin Synthase from Soybean (콩으로부터 상처 유도 beta-amyrin synthase 유전자의 동정 및 발현분석)

  • Park, Seong-Whan;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2002
  • Suppression subtractive hybridization (SSH) was used to isolate wound-induced cDNAs from wounded soybean. One of wound-induced cDNA, gmwi33 showed high homology with genes encoding $\beta$-amyrin synthase. The full length cDNA of gmwi33, designated GmAMS1, is 2416 bp long and contains an open reading frame consisted of 739 amino acids. GmAMS1 protein showed 89% identity with licorice GgbAS1 and 86% identity with pea OSCPSY. In 5 day-old, dark-grown seedlings, the expression of GmAMS1 was most strongly induced by light and weakly induced by methyl jasmonate and by low temperature. However, GmAMS1 was not induced by elicitor or UV-B treatment. Such expression pattern might be closely related with the oxygen-radical scavenging activity of soyasaponin.

Up-regulation of Asiaticoside Biosynthesis by Methyl Jasmonate and Thidiazuron in Centella asiatica L. Urban

  • Kim, Ok-Tae;Kim, Min-Young;Ahn, Jun-Cheul;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.233-236
    • /
    • 2005
  • Centella asiatica accumulates large amounts of triterpene saponin, such as centellasaponin, asiaticoside, madecassoside. We examined the effect of two candidates, MJ (Methyl jasmonate) and TDZ (thidiazuron), on asiaticoside production and the accumulation of bAS mRNA associated with asiaticoside biosynthesis in leaves of cultured whole plants. The growth of whole plants treated with 0.1 mM MJ was found to decrease significantly, however, the growth of whole plants treated with 0.1 mM MJ plus 0.025 mg/l TDZ was better than that treated with MJ alone. When MJ alone was added to culture medium, asiaticoside contents in leaves were higher than that of control after 7 days of treatments. The maximum level of bAS $({\beta}-amyrin\;synthsae)$ mRNA in leaves of whole plant treated TDZ and MJ was transiently observed after exposure to 5 days. These results showed the up-regulation of bAS gene by adding TDZ and MJ at the molecular level, however, synergic effects of TDZ and MJ on asiaticoside biosynthesis were not testified.

Triterpenoid Ginsenoside Biosynthesis in Panax ginseng C. A. Meyer (인삼에서의 트리터페노이드 진세노사이드의 생합성)

  • Kim, Yu-Jin;Lee, Ok-Ran;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.20-20
    • /
    • 2012
  • Isoprenoids represent the most diverse group of metabolites, which are functionally and structurally identified in plant organism to date. Ginsenosides, glycosylated triterpenes, are considered to be the major pharmaceutically active ingredient of ginseng. Its backbones, categorized as protopanaxadiol (PPD), protopanaxatriol (PPT), and oleanane saponin, are synthesized via the isoprenoid pathway by cyclization of 2,3-oxidosqualene mediated with dammarenediol synthase or beta-amyrin synthase. The rate-limiting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), which is the first committed step enzyme catalyzes the cytoplasmic mevalonate (MVA) pathway for isoprenoid biosynthesis. DXP reductoisomerese (DXR), yields 2-C-methyl-D-erythritol 4-phosphate (MEP), is partly involved in isoprenoid biosynthesis via plastid. Squalene synthase and squalene epoxidase are involved right before the cyclization step. The triterpene backbone then undergoes various modifications, such as oxidation, substitution, and glycosylation. Here we will discuss general biosynthesis pathway for the production of ginsenoside and its modification based on their subcellular biological functions.

  • PDF

Effects of Precursor and Thidiazuron on Triterpene Saponin Biosynthesis in Centella asiatica (L.) Urban

  • Kim, Ok-Tae;Kim, Min-Young;Ahn, Jun-Cheul;Li, Mei-Yang;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.2
    • /
    • pp.91-94
    • /
    • 2005
  • Plants have been known to accumulate a very diverse range of triterpene saponins. We have investigated the regulation of saponin biosynthesis in higher plants using Centella asiatica (L.) Urban as a model plant. Effects of a feeding precursor on asiaticoside production from leaves and on the level of two-type OSCs mRNA were investigated. As a feeding precursor, squalene negatively affected the levels of CYS and bAS mRNA, but it also decreased the production of asiaticoside from whole plants. Plant hormones regulate secondary metabolism, and in plant tissue cultures they could affect both culture growth and secondary metabolite production. Although enhancement of asiaticoside production from whole plant cultures by addition of TDZ (thidiazuron) has been reported, the positive effect of TDZ on the levels of OSCs transcripts was not observed.

The Effect of Haliotidis Concha on the Growth and Ginsenoside Biosynthesis of Korean Ginseng Hairy Root (인삼 모상근의 생장과 Ginsenoside 생합성에 미치는 석결명의 영향)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;Jung, Seok-Kyu;Kim, Se-Young;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.206-211
    • /
    • 2009
  • In order to investigate the effects of elicitors on the growth and ginsenoside biosynthesis of ginseng hairy roots, we treated Panax ginseng hairy root with various concentrations of Haliotidis concha according to different time course. Haliotidis concha supplement increased the biomass and ginsenoside accumulation at 10 mg/L concentration. The growth rate of hairy root under a lighter concentration was greater than hairy root treated with a denser concentration. The highest content and productivity of ginsenosides appeared at 2 weeks after the treatment of 10 mg/L Haliotidis concha. The gene expression of squalene synthase, squalene epoxidase, dammarenediol synthase, cycloartenol synthase, $\beta$-amyrin synthase in hairy roots of ginseng were examined by RT-PCR. The Haliotidis concha treatment resulted in the obvious accumulation of the mRNA of triterpene biosynthesis in Panax ginseng hairy root as compared with the control. In this study, Haliotidis concha acts as a kind of elicitor for the production of ginsenosides.