• Title/Summary/Keyword: ${\beta}-Mannanase$

Search Result 57, Processing Time 0.022 seconds

Effect of increasing β-mannanase supplementation in diets containing copra meal on growth performance, meat quality, liver health, intestinal morphology, and nutrient utilization in broiler chickens

  • Eun Cheol Lee;Kang Hyeon Kim;Min Sung Kang;Deok Yun Kim;Charline Mugeniwayesu;Dong Yong Kil
    • Animal Bioscience
    • /
    • v.37 no.11
    • /
    • pp.1945-1952
    • /
    • 2024
  • Objective: The current study aimed to investigate the effect of increasing β-mannanase supplementation in diets containing copra meal (CM) on growth performance, meat quality, liver health, intestinal morphology, and nutrient utilization in broiler chickens. Methods: A total of 1,600 3-d-old Ross 308 broiler chickens (initial body weight±standard deviation = 43.3±1.08 g) were randomly allotted to 1 of 5 treatment groups with 8 replicates. One group was fed a corn-soybean meal-based diet (control). Other 4 diets were prepared by inclusion of 10% commercial CM in the control diet with 0, 400, 800, and 1,600 U β-mannanase/kg. Experiments lasted for 32 d. Results: Birds fed the control diet had less (p = 0.001) feed conversion ratio (FCR) than those fed diets containing 10% CM without β-mannanase supplementation. Increasing supplementation of β-mannanase in diets containing 10% CM had no linear and quadratic effects on body weight gain, feed intake, and FCR in broiler chickens. The control diet had greater (p<0.01) apparent total tract retention (ATTR) of dry matter (DM), gross energy (GE), and N as compared to the diets containing 10% CM without β-mannanase supplementation; however, no differences in the ATTR of Ca and P were identified between 2 diets. There were no linear and quadratic effects of increasing supplementation of β-mannanase on the ATTR of DM, GE, N, Ca, and P in broiler diets containing 10% CM. Both inclusion of 10% CM and increasing supplementation of β-mannanase in broiler diets did not affect apparent metabolizable energy (AME) and N-corrected AME (AMEn) values in treatment diets. Conclusion: The use of 10% CM in broiler diets during growing and finishing period impairs growth performance by decreasing energy and nutrient utilization in diets. Increasing β-mannanase supplementation in diets containing 10% CM has no positive effects on performance, meat quality, liver health, intestinal morphology, and nutrient utilization in broiler chickens.

Amino acid digestibility in diets containing copra meal with β-mannanase fed to growing pigs

  • Jang, Jae Cheol;Kim, Dong Hyuk;Jang, Young Dal;Kim, Yoo Yong
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1974-1980
    • /
    • 2021
  • Objective: The objective of this study was to estimate standardized ileal digestibility (SID) of amino acids (AA) in growing pigs fed diets containing increasing levels of copra meal (CM) with β-mannanase supplementation. Methods: Twenty barrows (initial body weight: 34.43±0.11 kg) surgically fitted with T-cannulas at the distal ileum were individually housed in metabolism crates. Pigs were allotted to 5 dietary treatments in a completely randomized design with 4 replicates per treatment. The dietary treatments were: i) NC, negative control, corn-soybean meal (SBM) based diet, ii) PC, positive control, basal diet + 0.10% β-mannanase supplementation (800 IU/kg), iii) CM6, PC diet with 6% CM supplementation, iv) CM12, PC diet with 12% CM supplementation, and v) CM18, PC diet with 18% CM supplementation. A nitrogen-free diet was used to estimate basal endogenous losses of AA for SID calculation. All experimental diets contained 0.5% chromic oxide as an indigestible marker. Each period consisted of a 4-d diet adaptation period and a 3-d ileal digesta collection period. Results: There were no differences in apparent ileal digestibility (AID) and SID of all AA between the NC and PC treatments except that the PC treatment had lower AID and SID of glycine than the NC treatment (p<0.05). There were linear decreases in AID and SID of lysine (p<0.05) and aspartic acid (p = 0.06; tendency) with increasing levels of CM in the diets with β-mannanase. Conclusion: The β-mannanase supplementation had no effect on AA digestibility in pigs fed the corn-SBM based diet but increasing levels of CM reduced SID of lysine and aspartic acid.

Partial Purification and Characterization of Thermostable Alkaline $\beta$-Mannanase from Bacillus sp. JB-99 Suitable for Pulp Bleaching

  • VIRUPAKSHI S.;BABU K. GlREESH;NAIK GAJANAN R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.689-693
    • /
    • 2005
  • Bacillus sp. JB-99, when grown in a chemically defined medium containing lactose as a carbon source, yielded 3,860 U/ml extracellular $\beta$-mannanase, which was high compared to other examined carbon sources. Among the nitrogen sources, yeast extract enhanced the enzyme activity. The enzyme production was growth-associated. The enzyme was optimally active at $65^{\circ}C$, pH 10, and had a half-life of 190 min at $65^{\circ}C$. N-Bromosuccinamide and $AgNO_3,\;CuSO_4$, and $HgCl_2$ strongly inhibited the enzyme, whereas $Ca^{2+}$ stimulated the enzyme activity. The $\alpha$-galactosidase enzyme production was not found in any of the enzyme assays.

β-Xylosidase and β-mannosidase in combination improved growth performance and altered microbial profiles in weanling pigs fed a corn-soybean meal-based diet

  • Liu, Shaoshuai;Ma, Chang;Liu, Ling;Ning, Dong;Liu, Yajing;Dong, Bing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1734-1744
    • /
    • 2019
  • Objective: In this study, two glycosidases (XMosidases), ${\beta}$-xylosidase and ${\beta}$-mannosidase, were investigated on their in vitro hydrolysis activities of feed and on the improvement of growth performance in vivo in weanling pigs. Methods: Enzyme activities of XMosidases in vitro were evaluated in test tubes and simulation of gastric and small intestinal digestion, respectively, in the presence of NSPase. In vivo study was performed in 108 weaned piglets in a 28-d treatment. Pigs were allotted to one of three dietary treatments with six replicate pens in each treatment. The three treatment groups were as follows: i) Control (basal diet); ii) CE (basal diets+CE); iii) CE-Xmosidases (basal diets+ CE+${\beta}$-xylosidase at 800 U/kg and ${\beta}$-mannosidase at 40 U/kg). CE was complex enzymes (amylase, protease, xylanase, and mannanase). Results: In vitro XMosidases displayed significant activities on hydrolysis of corn and soybean meal in the presence of non-starch polysaccharide degrading enzymes (xylanase and ${\beta}$-mannanase). In vitro simulation of gastric and small intestinal digestion by XMosidases showed XMosidases achieved $67.89%{\pm}0.22%$ of dry matter digestibility and $63.12%{\pm}0.21%$ of energy digestibility at $40^{\circ}C$ for 5 hrs. In weanling pigs, additional XMosidases to CE in feed improved average daily gain, feed conversion rate (p<0.05), and apparent total tract digestibility of crude protein (p = 0.01) and dry matter (p = 0.02). XMosidases also altered the gut bacterial diversity and composition by increasing the proportion of beneficial bacteria. Conclusion: Addition of a complex enzyme supplementation (contained xylanase, ${\beta}$-mannanase, protease and amylase), XMosidases (${\beta}$-xylosidase and ${\beta}$-mannosidase) can further improve the growth performance and nutrient digestion of young pigs.

Screening of Hemicellulose Oligosaccharides and Preparation of the Recipe for Modified MRS Medium by the Replacement of Carbon Source (Hemicellulose계열 올리고당 탐색 및 탄소원 대체에 의한 장내세균 생육활성용 신규 MRS배지의 조제)

  • Lee, Hee-Jung;Park, Gwi-Gun
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.6
    • /
    • pp.272-276
    • /
    • 2008
  • Purification and some properties of Xylogone sphaerospora ${\beta}$-mannanase were reprevious previous paper. Locust bean gum galactomannan was hydrolyzed by the purified ${\beta}$-mannanase, and then the hydrolysates was separated by activated carbon column chromatography. The main hydrolysates were composed of D.P. (Degree of Polymerization) 4 and 6 galactosyl mannooligosaccharides. For elucidate the structure of D.P 4 and 6 galactosyl mannooligosaccharides, sequential enzymatic action was performed. D.P 4 and 6 were identified as ${Gal^2}{Man_3}\;(6^2-mono-O-{\alpha}-D-galactopyranosyl-4-O-{\beta}-D-mannotriose)$ and ${Gal^2}{Man_5}\;(6^2-mono-O-{\alpha}-D-galacto- pyranosyl-4-O-{\beta}-D-mannopentaose)$. To investigate the effects of locust bean gum galactosyl mannooligosaccharides on in vitro growth of Bifidobacterium longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, B. auglutum and B. breve. Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon source such as D.P. 4 and D.P. 6 galactosyl mannooligosaccharides, respectively. B. longum and B. bifidum grew up to-fold and 6.6-fold more effectively by the treatment of D.P. 6 galactosyl mannooligosaccharides, compared to those of standard MRS medium. Especially, D.P. 6 was more effective than D.P. 4 galactosyl mannooligosaccharide on the growth of Bifidobacterium spp.

Metabolism Activity of Bifidobacterium spp. by D.Ps of Konjac Glucomannan Hydrolysates (Konjac Glucomannan 가수분해 올리고당의 중합도별 Bifidobacterium spp.에 대한 대사활성)

  • 최준영;박귀근
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.7
    • /
    • pp.1186-1191
    • /
    • 2004
  • Bacillus sp. $\beta$-mannanase was purified by DEAE-sephadex ion exchange column chromatography. The partially purified P-mannanase exhibited maximum activity at pH 6.0 and 5$0^{\circ}C$, and was stable at a pH range of 5.5 to 7.0, and at temperature between 30 to 5$0^{\circ}C$. Konjac glucomannan was hydrolyzed by the purified $\beta$-mannanase, and then hydrolysates separated by 1st activated carbon column chromatography and 2nd sephadex G-25 gel filtration. The main hydrolysates were composed of D.P 5 and 7 glucomannooligosaccharides by TLC and FACE method. To investigate the effects of guar gum glucomannooligosaccharides on the in vitro growth of B. longum, B. bifidum, B. infantis, B. adolescentis, B. animalis, and B. breve, Bifidobacterium spp. were cultivated individually on the modified-MRS medium containing carbon SOUTce such as D.P 5, and D.P 7 glucomannooligosaccharides, respectively. B. longum grew up 4.6-fold and 5.3-fold more effectively by the replacement of D.P 5 and 7 glucomannooligosaccharides as the carbon source in a comparasion of standard MRS. Also, B. breve and B. animalis slightly grew up by the treatment of D.P 5 glucomannooligosaccharide.

Cloning and Characterization of a Novel Mannanase from Paenibacillus sp. BME-14

  • Fu, Xiaoyu;Huang, Xiaoluo;Liu, Pengfu;Lin, Ling;Wu, Gaobing;Li, Chanjuan;Feng, Chunfang;Hong, Yuzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.518-524
    • /
    • 2010
  • A mannanase gene (man26B) was obtained from a sea bacterium, Paenibacillus sp. BME-14, through the constructed genomic library and inverse PCR. The gene of man26B had an open reading frame of 1,428 bp that encoded a peptide of 475- amino acid residues with a calculated molecular mass of 53 kDa. Man26B possessed two domains, a carbohydrate binding module (CBM) belonging to family 6 and a family 26 catalytic domain (CD) of glycosyl hydrolases, which showed the highest homology to Cel44C of P. polymyxa (60% identity). The optimum pH and temperature for enzymatic activity of Man26B were 4.5 and $60^{\circ}C$, respectively. The activity of Man26B was not affected by $Mg^{2+}$ and $Co^{2+}$, but was inhibited by $Hg^{2+},\;Ca^{2+},\;Cu^{2+},\;Mn^{2+},\;K^+,\;Na^+$, and $\beta$-mercaptoethanol, and slightly enhanced by $Pb^{2+}$ and $Zn^{2+}$. EDTA did not affect the activity of Man26B, which indicates that it does not require divalent ions to function. Man26B showed a high specific activity for LBG and konjac glucomannan, with $K_m,\;V_{max}$, and $k_{cat}$ values of 3.80 mg/ml, 91.70 ${\mu}mol$/min/mg protein, and 77.08/s, respectively, being observed when LBG was the substrate. Furthermore, deletion of the CBM6 domain increased the enzyme stability while enabling it to retain 80% and 60% of its initial activity after treatment at $80^{\circ}C$ and $90^{\circ}C$ for 30 min, respectively. This finding will be useful in industrial applications of Man26B, because of the harsh circumstances associated with such processes.

Antioxidant Action of Reaction Mixtures of Gums Hydrolysates and Urea Derivatives (중합도별 gum류 가수분해 올리고당과 urea관련화합물과의 반응혼합물이 항산화능에 미치는 영향)

  • Kim, Sang-Woo;Park, Gwi-Gun
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.384-389
    • /
    • 2004
  • The purified ${\beta}-mannanase$ hydrolyzed various gums to mannose, ${\beta}-1,4-mannobiose$, $Gal^3Man_4$, and D.P 7 of galactosyl mannooligosaccharide, and isolated from the enzymatic hydrolysate for 24 hrs reaction by activated carbon column chromatography and Sephadex G-25 column chromatography. For the elucidate of antioxidant action of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ and DP 7 of galactosyl mannooligosaccharide and urea derivatives, coloration, reducing power, antioxidant activity and DPPH test were accomplished. The coloration was high at reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and urea. TLC of reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and ureas showed new reaction products, respectively. but except reaction mixture of ${\beta}-1,4-mannobiose$ and urea. The reducing power was high at reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and phenylthiourea. The reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and thiourea showed similar radical scavenging activities on DPPH to activity of AsA. The reaction mixture of ${\beta}-1,4-mannobiose$, $Gal^3Man_4$ D.P 7 and thiourea, phenythiolurea shown strong antioxidative activites on the oxidation of linoneic acid.

Analysis of Functional Genes in Carbohydrate Metabolic Pathway of Anaerobic Rumen Fungus Neocallimastix frontalis PMA02

  • Kwon, Mi;Song, Jaeyong;Ha, Jong K.;Park, Hong-Seog;Chang, Jongsoo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.11
    • /
    • pp.1555-1565
    • /
    • 2009
  • Anaerobic rumen fungi have been regarded as good genetic resources for enzyme production which might be useful for feed supplements, bio-energy production, bio-remediation and other industrial purposes. In this study, an expressed sequence tag (EST) library of the rumen anaerobic fungus Neocallimastix frontalis was constructed and functional genes from the EST library were analyzed to elucidate carbohydrate metabolism of anaerobic fungi. From 10,080 acquired clones, 9,569 clones with average size of 628 bp were selected for analysis. After the assembling process, 1,410 contigs were assembled and 1,369 sequences remained as singletons. 1,192 sequences were matched with proteins in the public data base with known function and 693 of them were matched with proteins isolated from fungi. One hundred and fifty four sequences were classified as genes related with biological process and 328 sequences were classified as genes related with cellular components. Most of the enzymes in the pathway of glucose metabolism were successfully isolated via construction of 10,080 ESTs. Four kinds of hemi-cellulase were isolated such as mannanase, xylose isomerase, xylan esterase, and xylanase. Five $\beta$-glucosidases with at least three different conserved domain structures were isolated. Ten cellulases with at least five different conserved domain structures were isolated. This is the first solid data supporting the expression of a multiple enzyme system in the fungus N. frontalis for polysaccharide hydrolysis.