• Title/Summary/Keyword: ${\beta}-Galactosidase$

Search Result 529, Processing Time 0.022 seconds

Regulation of $\beta$-Galactosidase Biosynthesis in Alkalophilic, Thermophilic Bacillus sp. TA-11 (호알칼리성, 고온성 Bacillus sp. TA-11의 $\beta$-galactosidase의 생합성 조절)

  • Lee, Jong-Su;Lee, Hyang-Sook
    • The Journal of Natural Sciences
    • /
    • v.5 no.2
    • /
    • pp.13-17
    • /
    • 1992
  • Regulation of $\beta$-galactosidase biosynthesis was studied with alkalophilic, thermophilic Bacillus sp. TA-11. Biosynthesis of the enzyme was effectively induced by lactose and some low level by isoprophyl-$\beta$-D-thiogalactopyranoside(IPTG). When 30mM glucose was added at the different intervals to the culture that had been in contact with lactose, the different levels of the enzyme synthesis were observed. So, this suggests that glucose interfered with the entry of the lactose into the cells.The glucose inhibitory effect was not relieved by adding cAMP to the culture.

  • PDF

Purification and Properties of $\beta$-Galactosidase from Neisseria lactamica 2118 (Neisseria lactamica 2118이 생성하는 $\beta$-Galactosidase의 정제 및 성질)

  • Lee, Jong-Soo;Kwak, In-Young;Kim, Na-Mi
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.59-68
    • /
    • 1991
  • $\beta$-Galactosidase(EC 3.2.1.23) from pathogenic Neisseria lactamica 2118 was purified by p-aminopheny1-$\beta$-D-thiogalactopyranoside agarose affinity chromatography. Then some properties of the purified $\beta$-galactosidase were investigated.$\beta$-Galactosidase form Neisseria lactamica 2118 was constitutive enzyme, not induced by lactose and IPTG. Optimal activity was observed at $35^{\circ}C$ and pH 7.5 and the enzyme was stable at the range of pH 6.0-9.0 and at temperature below $50^{\circ}C$. The enzyme activity was inhibited by cations such as $Hg^(2+)$ and $Co^(2+)$.

  • PDF

Purification of $\beta$-Galactosidase from Alkalophilic Bacillus sp. YS-309 (호알카리성 Bacillus sp. YS-309로부터 $\beta$-Galactosidase의 정제)

  • 유주현;윤성식
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.587-592
    • /
    • 1989
  • A strain of alkalophilic Bacillus sp. YS-309 capable of producing large amount of $\beta$-galactosidase has been isolated from soil sample. Intracellular $\beta$-galactosidase was purified 6.9 folds by procedures including ammonium sulfate precipitation, DEAE-cellulose chromatography, gel-filtration, DEAE-Sephadex A-50 chromatography with over-all yield of 17.8%. The molecular weight of native enzyme was 205, 000 by HPLC, and SDS-polyacrylamide gel electrophoresis showed that the enzyme consisted of 4 identical subunits with a molecular weight of 56, 000.

  • PDF

Molecular cloning of phospho-$\beta$-galactosidase gene of lactobacillus casei in escherichia coli (Lactobacillus casei의 phospho-$\beta$-galactosidase 유전자의 대장균내 분자클로닝)

  • 문경희;박정희;최순영;이유미;김태한;김연수;민경희
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.188-193
    • /
    • 1989
  • Gene for lactose catabolism in Lactobacillus casei SW-M1 was encoded by a 60Kb metabolic plasmid. A derivative of only 10kb, pPlac 15 of recombinant plasmid, was constructed by introducing into pBR322 and was cloned into E. coli using restriction endonuclease Pst I. A 10kb insery DNA in plasmid pBR322 was identified as a gene encoded phospho-$\beta$-galactosidase by the determination of enzyme activity. Phospho-$\beta$-galactosidase was apparently expressed in E. coli. The enzyme activities of cell-free extract from transformant E. coli HB101 carrying pPLac 15 DNA were not different from that of L. casei as a donor strain on the basis of enzyme properites. However, specific activity of phospho-$\beta$-galactosidase in the cloned strain with Lac $Y^{-}$ phenotype of E. coli HB101 was lower than that in L. casei strain.

  • PDF

Optimization of $\beta$-Galactosidase Production in Stirred Tank Bioreactor Using Kluyveromyces lactis NRRL Y-8279

  • Dagbagh, Seval;Goksungur, Yekta
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1342-1350
    • /
    • 2009
  • This paper investigates the production and optimization of $\beta$-galactosidase enzyme using synthetic medium by Kluyveromyces lactis NRRL Y-8279 in stirred tank bioreactor. Response surface methodology was used to investigate the effects of fermentation parameters on $\beta$-galactosidase enzyme production. Maximum specific enzyme activity of 4,622.7 U/g was obtained at the optimum levels of process variables (aeration rate 2.21 vvm, agitation speed 173.4 rpm, initial sugar concentration 33.8 g/L, incubation time 24.0 hr). The optimum temperature and pH of the $\beta$-galactosidase enzyme produced under optimized conditions were $37^{\circ}C$ and pH 7.0, respectively. The enzyme was stable over a pH range of 6.0-7.5 and a temperature range of $25-37^{\circ}C$. The $K_m$ and $V_{max}$ values for O-nitrophenol-$\beta$-D-galactopyranoside (ONPG) were 1.20 mM and $1,000\;{\mu}mol/min{\cdot}mg$ protein, respectively. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in $\beta$-galactosidase enzyme production. Hence, this study fulfills the lack of using mathematical and statistical techniques in optimizing the $\beta$-galactosidase enzyme production in stirred tank bioreactor.

Studies on the Production of $\beta$-Galactosidase by Microorganism and its Application (Part 1) Conditions for the Production and Purification of the Enzyme from Penicillium SP. (미생물에 의한 $\beta$-Galactosidase의 생산 및 이용에 관한 연구 (제 1보) Penicillium sp.로부터 효소의 생산조건 및 정제)

  • 오평수;양한철
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.4
    • /
    • pp.207-212
    • /
    • 1981
  • A strain of Penicillium sp. which produces considerable amount of $\beta$-galactosidase was selected from extracellular $\beta$-galactosidase-producing fungi isolated from soil. The enzyme was found to be very stable in neutral pH range. Maximum enzymatic activity was reached after 72 hr of incubation in a wheat bran medium at 3$0^{\circ}C$. Productivity of the enzyme appeared not to be affected by the addition of carbon sources to the medium but the activity of the enzyme was increased from 14% to 85% by the addition of various nitrogen sources. The enzyme extracted from the wheat-bran culture of the Penicillium sp. was purified to 5050-fold by ammonium sulfate fractionation, SP-Sephadex C-50 chromatography, Ultrogel AcA 44 filtration and hydroxyapatite chromatography. The purified $\beta$-galactosidase was homogeneous on ultracentrifugation and disc electrophoresis.

  • PDF

Effect of Temperature and Carbon Source on the Expression of $\beta$-Galactosidase Gene of Lactococcus lactis ssp. lactis ATCC 7962

  • Kim, Tea-Youn;Lee, Jung-Min;Chang, Hae-Choon;Chung, Dae-Kyun;Lee, Jong-Hoon;Kim, Jeong-Hwan;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.2
    • /
    • pp.201-205
    • /
    • 1999
  • The effects of growth temperature and a carbon source on the expression of $\beta$-galactosidase gene of Lactococcus lactis ssp. lactis ATCC 7962 (L. lactis 7962) were investigated. At $25^{\circ}C$, L. lactis 7962 had a higher $\beta$-galactosidase activity than cells grown at $30^{\circ}C$ or $37^{\circ}C$, although cells grew most quickly at $37^{\circ}C$ The highest $\beta$-galactosidase activity was observed in cells grown in M17 with lactose (l %) followed by cells grown in a galactose (1 %) medium. L. lactis 7962 exhibited the minimum $\beta$-galactosidase activity in glucose media, indicating catabolite repression. When the cellular levels of $\beta$-galactosidase mRNA were examined using slot blot hybridization, no significant differences were observed between cells grown at $25^{\circ}C$ and cells at $30^{\circ}C$ or $37^{\circ}C$ in the same media. This suggests that the quantity of $\beta$-galactosidase mRNA may not be the reason for the higher $\beta$-galactosidase activities of L. lactis 7962 at $25^{\circ}C$ The level of ccpA (Catabolite Control Protein) transcript remained almost constant during the exponential growth phase irrespective of a carbon sourse.

  • PDF

Encapsulation of Whole Cell $\beta$-Galactosidase of Escherichia coli (전세포 Escherichia coli 의 캡슐고정화)

  • 이병희;박중곤
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.398-404
    • /
    • 1996
  • Escherichia coli was inoculated in calcium alginate capsules and cultivated to prepare encapsulated whole cell ${\beta}$-galactosidase. The dry cell weight in the capsule reached 100 g/L based on the inner space of the capsule. The activity of the encapsulated whole cell ${\beta}$-galactosidase increased with the dry cell weight increase during cultivation in the production medium. The activity of the encapsulated whole cell ${\beta}$-galactosidase was increased 25% by adding $2{\times}10^{-4}M Zn^{+2}$ ion in the production medium and 10% by coencapsulating with 2% (v/v) sunflower seed oil. The activity of encapsulated whole cell ${\beta}$-galactosidase produced in the concentric air lift reactor in which kLa was 82/hr was 86% higher than that in the shaking flask incubator where kLa was 2.55/hr.

  • PDF

Cloning and Expression of Kluyveromyces fragilis $\beta$-Galactosidase Gene in Saccharomyces cerevisiae

  • Bang, Jeong-Hee;Nam, Doo-H.;Kang, Dae-Ook;Ahn, Jong-Seog;Ryu, Dewey-D.Y.
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.6-13
    • /
    • 1995
  • A gene coding for the $\beta$-galactosidase (lactase) of Kluyveromyces tragilis UCD 55-55 was isolated by complementation in Escherichia coli YMC9. From the plasmid library made from Sau3A-digested chromosomal DNA, one positive clone was selected. The cloned gene for $\beta$-galactosidase was on 7.3 kilobase pair DNA fragment, and a slightly low level of $\beta$-galactosidase enzyme activity was detecied in E. coli. It was also confirmed that the cloned gene comes from K. tragilis by DNA-DNA hybridization and immunochemical blotting experiments. In order to construct a new yeast strain having the metabolic ability for lactose, the cloned gene for K. tragilis $\beta$-galactosidase was inserted in yeast vector YEp24 and YRp17, and transformed into Saccharomyces cerevisiae YNN27 and Ml-2B. The yeast transformants showed the nearly the same $\beta$-galactosidase productivity as level of K. tragilis when uninduced, but these could not utilize lactose as a sole carbon source, presumably due to the lack of lactose transport system. Nevertheless, a slightly higher ethanol productivity was achieved by these transformants than S. cerevisiae or K. tragilis, in the medium containing glucose and lactose.

  • PDF

Studies on the ${\beta}-Galactosidase$ Activity of Whole Cell Aspergillus Phoenicis (Aspergillus Phoenicis Whole Cell의 ${\beta}-Galactosidase$ 활성(活性)에 관한 연구(硏究))

  • Kim, Mal-Nam
    • The Korean Journal of Mycology
    • /
    • v.11 no.3
    • /
    • pp.109-114
    • /
    • 1983
  • ${\beta}-Galactosidase$ activity of Aspergillus phoenicis was studied using ONPG and lactose as substrate. It increased monotonically during the exponential growth phase and dropped rapidly at the beginning of the stationary one. It exhibited high tolerable temperature and acidic optimal pH which provides certain advantages from the industrial view point. Enzyme of ${\beta}-galactosidase$ had more subsrate affinity for ONPG than for lactose and its apparent maximum activity was also higher with the former as substrate. Activity of this enzyme depended upon the conditions of immobilization. Optimum crosslinking reaction was occurred at pH 7.2 and 0. 35 vol. % of glutaraldehyde concentration.

  • PDF