Browse > Article

Optimization of $\beta$-Galactosidase Production in Stirred Tank Bioreactor Using Kluyveromyces lactis NRRL Y-8279  

Dagbagh, Seval (Department of Food Engineering, Ege University)
Goksungur, Yekta (Department of Food Engineering, Ege University)
Publication Information
Food Science and Biotechnology / v.18, no.6, 2009 , pp. 1342-1350 More about this Journal
Abstract
This paper investigates the production and optimization of $\beta$-galactosidase enzyme using synthetic medium by Kluyveromyces lactis NRRL Y-8279 in stirred tank bioreactor. Response surface methodology was used to investigate the effects of fermentation parameters on $\beta$-galactosidase enzyme production. Maximum specific enzyme activity of 4,622.7 U/g was obtained at the optimum levels of process variables (aeration rate 2.21 vvm, agitation speed 173.4 rpm, initial sugar concentration 33.8 g/L, incubation time 24.0 hr). The optimum temperature and pH of the $\beta$-galactosidase enzyme produced under optimized conditions were $37^{\circ}C$ and pH 7.0, respectively. The enzyme was stable over a pH range of 6.0-7.5 and a temperature range of $25-37^{\circ}C$. The $K_m$ and $V_{max}$ values for O-nitrophenol-$\beta$-D-galactopyranoside (ONPG) were 1.20 mM and $1,000\;{\mu}mol/min{\cdot}mg$ protein, respectively. The response surface methodology was found to be useful in optimizing and determining the interactions among process variables in $\beta$-galactosidase enzyme production. Hence, this study fulfills the lack of using mathematical and statistical techniques in optimizing the $\beta$-galactosidase enzyme production in stirred tank bioreactor.
Keywords
stirred tank bioreactor; $\beta$-galactosidase; Kluyveromyces lactis; response surface methodology; synthetic medium;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Boon MA, Riet van't K, Janssen AEM. Enzymatic synthesis of oligosaccharides: Product removal during a kinetically controlled reaction. Biotechnol. Bioeng. 70: 411-420 (2000)   DOI   ScienceOn
2 Dagbagli S, Goksungur Y. Optimization of $\beta$-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electron. J. Biotechnol. [online]. 11(4): 11-12 (2008)
3 Roukas T, Liakopoulou-Kyriakides M. Production of pullulan from beet molasses by Aureobasidium pullulans in a stirred tank fermentor. J. Food Eng. 40: 89-94 (1999)   DOI   ScienceOn
4 Furlan S, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R. Formulation of a lactose-free, low cost culture medium for the production of $\beta$-D-galactosidase by Kluyveromyces marxianus. Biotechnol. Lett. 22: 589-593 (2000)   DOI   ScienceOn
5 He YQ, Tan TW. Use of response surface methodology to optimize culture medium for production of lipase with Candida sp. 99-125. J. Mol. Catal. B-Enzym. 43: 9-14 (2006)   DOI   ScienceOn
6 FCC. Lactase ($\beta$-galactosidase) activity. p. 491. In: Food Chemicals Codex. 3rd ed. National Academy Press, Washington, DC, USA (1993)
7 Furlan SA, Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R. Optimization of pH, temperature, and inoculum ratio for the production of $\beta$-D-galactosidase by Kluyveromyces marxianus using a lactose free medium. Acta Biotechnol. 21: 57-64 (2001)   DOI   ScienceOn
8 Liu CH, Lu WB, Chang JS. Optimizing lipase of Burkholderia sp. by response surface methodology. Process Biochem. 41: 1940-1944 (2006)   DOI   ScienceOn
9 Goksungur Y, Da$\breve{g}$a$\breve{g}$iS, Ucan A, Guvenc U. Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. J. Chem. Technol. Biot. 80: 819-827 (2005)   DOI   ScienceOn
10 Barberis S, Gentina JC. Effect of dissolved oxygen level on lactase production by Kluyveromyces fragillis. J. Chem. Technol. Biot. 73: 71-73 (1998)   DOI   ScienceOn
11 Uma Maheswar Rao JL, Satyanarayana T. Improving production of hyperthermostable and high maltose-forming $\alpha$-amylase by an extreme thermophile Geobacillus thermoleovorans using response surface methodology and its applications. Bioresource Technol. 98: 345-352 (2007)   DOI   ScienceOn
12 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976)   DOI   PUBMED   ScienceOn
13 Samoshina NM, Samoshin VV. The Michaelis constants ratio for two substrates with a series of fungal (mould and yeast) $\beta$-galactosidases. Enzyme Microb. Tech. 36: 239-251 (2005)   DOI   ScienceOn
14 Tari C, Gogus N, Tokatli F. Optimization of biomass, pellet size, and polygalacturonase production by Aspergillus sojae ATCC 20235 using response surface methodology. Enzyme Microb. Tech. 40: 1108-1116 (2007)   DOI   ScienceOn
15 Nawani NN, Kapadnis BP. Optimization of chitinase production using statistics based experimental designs. Process Biochem. 40: 651-660 (2005)   DOI   ScienceOn
16 Pinheiro R, Belo I, Mota M. Growth and $\beta$-galactosidase activity in cultures of Kluyveromyces marxianus under increased air pressure. Lett. Appl. Microbiol. 37: 438-442 (2003)   DOI   ScienceOn
17 Santos A, Ladero M, Garcia-Ochoa F. Kinetic modeling of lactose hydrolysis by a $\beta$-galactosidase from Kluyveromyces fragilis. Enzyme Microb. Tech. 22: 558-567 (1998)   DOI   ScienceOn
18 Fujimura Y, Rokushika S, Ohnishi M. Purification and molecular characterization of $\beta$-galactosidase from yeast Kluyveromyces lactis. J. Biol. Macromol. 3: 97-103 (2003)   DOI   ScienceOn
19 Chen KC, Lee TC, Houng JY. Search method for the optimal medium for the production of lactase by Kluyveromyces fragillis. Enzyme Microb. Tech. 14: 659-664 (1992)   DOI   ScienceOn
20 Potumarthi R, Ch S, Jetty A. Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: Effect of aretion and agitation regimes. Biochem. Eng. J. 34: 185-192 (2007)   DOI   ScienceOn
21 Gao H, Gu WY. Optimization of polysaccharide and ergosterol production from Agaricus brasiliensis by fermentation process. Biochem. Eng. J. 33: 202-210 (2007)   DOI   ScienceOn
22 Ibrahim HM, Yusoff WMW, Hamid AA, Illias RM, Hassan O, Omar O. Optimization of medium for the production of $\beta$-cyclodextrin glucanotransferase using central composite desing (CCD). Process Biochem. 40: 753-758 (2005)   DOI   ScienceOn
23 Manera AP, Ores JD, Ribeiro VA, Andre C, Burkert V, Kalil SJ. Optimization of the culture medium for the production of $\beta$-galactosidase from Kluyveromyces marxianus CCT 7082. Food Technol. Biotech. 46: 66-72 (2008)
24 Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959)   DOI
25 Rech R, Cassini CF, Secchi A, Ayub MAZ. Utilization of proteinhydrolyzed cheese whey for production of $\beta$-galactosidase by Kluyveromyces marxianus. J. Ind. Microbiol. Biot. 23: 91-96 (1999)   DOI   ScienceOn
26 Ornelas AP, Silveira WB, Sampaio FC, Passos FML. The activity of $\beta$-galactosidase and lactose metabolism in Kluyveromyces lactis cultured in cheese whey as a function of growth rate. J. Appl. Microbiol. 104: 1008-1013 (2008)   DOI   ScienceOn
27 Battestin V, Macedo GA. Tannase production by Paecilomyces variotii. Bioresource Technol. 98: 1832-1837 (2007)   DOI   ScienceOn
28 Cavaille D, Combes D. Characterization of $\beta$-galactosidase from Kluyveromyces lactis. Biotechnol. Appl. Bioc. 22: 55-64 (1995)
29 Schneider ALS, Merkle R, Carvalho-Jonas MF, Jonas R, Furlan S. Oxygen transfer on $\beta$-D-galactosidase production by Kluyveromyces marxianus using sugar cane molasses as carbon source. Biotechnol. Lett. 23: 547-550 (2001)   DOI   ScienceOn
30 Myers RH, Montgomery DD. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley&Sons, Inc., New York, NY, USA. p. 700 (1995)
31 Inchaurrondo VA, Yantorno OM, Voget CE. Yeast growth and $\beta$-galactosidase production during aerobic batch cultures in lactoselimited synthetic medium. Process Biochem. 29: 47-54 (1994)   DOI   ScienceOn
32 Takahashi T, Sugahara T, Yamaya S. Purification and characterization of a $\beta$-galactosidase from Treponema phagedenis (Reiter strain). Curr. Microbiol. 8: 341-345 (1983)   DOI
33 Naessens M, Vercauteren R, Vandamme EJ. Three-factor response surface optimization of the production of intracellular dextran dextrinase by Gluconobacter oxydans. Process Biochem. 39: 1299-1304 (2004)   DOI   ScienceOn
34 Li L, Zhang M, Jiang Z, Tang L, Cong Q. Characterization of a thermostable family 42 $\beta$-galactosidase from Thermotoga maritime. Food Chem. 112: 844-850 (2009)   DOI   ScienceOn
35 Albayrak N, Yang ST. Production of galacto-oligosaccharides from lactose by Aspergillus oryzae $\beta$-galactosidase immobilized on cotton cloth. Biotechnol. Bioeng. 77: 8-19 (2002)   DOI   ScienceOn
36 Lazaridou A, Roukas T, Billiaderis CG, Vaikousi H. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in stirred tank reactor under varying agitation. Enzyme Microb. Tech. 31: 122-132 (2002)   DOI   ScienceOn
37 Cortes G, Trujillo-Roldan MA, Ramirez OT, Galindo E. Production of $\beta$-galactosidase by Kluyveromyces marxianus under oscillating dissolved oxygen tension. Process Biochem. 40: 773-778 (2005)   DOI   ScienceOn
38 Martins DBG, de Souza Jr CG, Simoes DA, de Morais Jr MA. The $\beta$-galactosidase activity in Kluyveromyces marxianus CBS6556 decreases by high concentrations of galactose. Curr. Microbiol. 44: 379-382 (2002)   DOI   ScienceOn
39 Barberis SE, Segovia RF. Dissolved oxygen concentration-controlled feeding of substrate into Kluyveromyces fragilis culture. Biotechnol. Tech. 11: 797-799 (1997)   DOI   ScienceOn
40 Domingues L, Lima N, Teixeira JA. Aspergillus niger $\beta$-galactosidase production by yeast in a continous high cell density reactor. Process Biochem. 40: 1151-1154 (2005)   DOI   ScienceOn
41 Goksungur Y, Mantzouridou F, Roukas T, Kotzekidou P. Production of $\beta$-carotene from beet molasses by Blakeslea trispora in stirredtank and bubble column reactors. Appl. Biochem. Biotech. 112: 37-54 (2004)   DOI   ScienceOn
42 Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H. Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J. Dairy Sci. 91: 1751-1758 (2008)   DOI   ScienceOn
43 Fleming M, Barron N, McHale L, Marchant R, McHale AP. Studies on the growth of a thermotolerant yeast strain, Kluyveromyces marxianus IMB3, on sucrose containing media. Biotechnol. Lett. 15: 1195-1198 (1993)   DOI   ScienceOn
44 Shaikh SA, Khire JM, Khan MI. Production of $\beta$-galactosidase from thermophilic fungus Rhizomucor sp. J. Ind. Microbiol. Biot. 19: 239-245 (1997)   DOI   ScienceOn
45 Linko S, Enwald S, Zhu YH, Mayra-Makinen. Production of $\beta$-galactosidase by Streptococcus salivarius subsp thermophilus 11F. J. Ind. Microbiol. Biot. 20: 215-219 (1998)   DOI