• Title/Summary/Keyword: ${\beta}-Ga_2O_3$

Search Result 51, Processing Time 0.022 seconds

Vertical β-Ga2O3 Schottky Barrier Diodes with High-κ Dielectric Field Plate (고유전율 필드 플레이트를 적용한 β-Ga2O3 쇼트키 장벽 다이오드)

  • Se-Rim Park;Tae-Hee Lee;Hui-Cheol Kim;Min-Yeong Kim;Soo-Young Moon;Hee-Jae Lee;Dong-Wook Byun;Geon-Hee Lee;Sang-Mo Koo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.298-302
    • /
    • 2023
  • In this paper, we discussed the effect of field plate dielectric materials such as silicon dioxide (SiO2), aluminum oxide (Al2O3), and hafnium oxide (HfO2) on the breakdown characteristics of β-Ga2O3 Schottky barrier diodes (SBDs). The breakdown voltage (BV) of the SBDs with a field plate was higher than that of SBDs without a field plate. The higher dielectric constant of HfO2 contributed to the superior reduction in electric field concentration at the Schottky junction edge from 5.4 to 2.4 MV/cm. The SBDs with HfO2 field plate showed the highest BV of 720 V, and constant specific on-resistance (Ron,sp) of 5.6 mΩ·cm2, resulting in the highest Baliga's figure-of-merit (BFOM) of 92.0 MW/cm2. We also investigated the effect of dielectric thickness and field plate length on BV.

Growth of Si-Doped β-Ga2O3 Epi-Layer by Metal Organic Chemical Vapor Deposition U sing Diluted SiH4 (유기 금속 화학 증착법(MOCVD)의 희석된 SiH4을 활용한 Si-Doped β-Ga2O3 에피 성장)

  • Hyeong-Yun Kim;Sunjae Kim;Hyeon-U Cheon;Jae-Hyeong Lee;Dae-Woo Jeon;Ji-Hyeon Park
    • Korean Journal of Materials Research
    • /
    • v.33 no.12
    • /
    • pp.525-529
    • /
    • 2023
  • β-Ga2O3 has become the focus of considerable attention as an ultra-wide bandgap semiconductor following the successful development of bulk single crystals using the melt growth method. Accordingly, homoepitaxy studies, where the interface between the substrate and the epilayer is not problematic, have become mainstream and many results have been published. However, because the cost of homo-substrates is high, research is still mainly at the laboratory level and has not yet been scaled up to commercialization. To overcome this problem, many researchers are trying to grow high quality Ga2O3 epilayers on hetero-substrates. We used diluted SiH4 gas to control the doping concentration during the heteroepitaxial growth of β-Ga2O3 on c-plane sapphire using metal organic chemical vapor deposition (MOCVD). Despite the high level of defect density inside the grown β-Ga2O3 epilayer due to the aggregation of random rotated domains, the carrier concentration could be controlled from 1 × 1019 to 1 × 1016 cm-3 by diluting the SiH4 gas concentration. This study indicates that β-Ga2O3 hetero-epitaxy has similar potential to homo-epitaxy and is expected to accelerate the commercialization of β-Ga2O3 applications with the advantage of low substrate cost.

Characterization of epitaxial layers on beta-gallium oxide single crystals grown by EFG method as a function of different crystal faces and off-angle (EFG 법으로 성장시킨 β-Ga2O3 단결정의 다양한 결정면, off-angle에 따른 epitaxial layer의 특성 분석)

  • Min-Ji Chae;Sun-Yeong Seo;Hui-Yeon Jang;So-Min Shin;Dae-Uk Kim;Yun-Jin Kim;Mi-Seon Park;Gwang-Hee Jung;Jin-Ki Kang;Hae-Yong Lee;Won-Jae Lee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.109-116
    • /
    • 2024
  • β-Ga2O3 is a representative ultra-wide bandgap (UWBG) semiconductor that has attracted much attention for power device applications due to its wide-bandgap of 4.9 eV and high-breakdown voltage of 8 MV/cm. In addition, because solution growth is possible, it has advantages such as fast growth rate and lower production cost compared to SiC and GaN [1-2]. In this study, we have successfully grown Si-doped 10 mm thick Si-doped β-Ga2O3 single crystals by the EFG (Edge-defined Film-fed Growth) method. The growth direction and growth principal plane were set to [010] / (010), respectively, and the growth speed was 7~20 mm/h. The as-grown β-Ga2O3 single crystal was cut into various crystal planes (001, 100, ${\bar{2}}01$) and off-angles (1o, 3o, 4o), and then surface processed. After processed, the homoepitaxial layer was grown on the epi-ready substrate using the HVPE (Halide vapor phase epitaxy) method. The processed samples and the epi-layer grown samples were analyzed by XRD, AFM, OM, and Etching to compare the surface properties according to the crystal plane and off-angle.

Study on Synthesis of 68GeO2 and Behavior of 68Ga3+ for Generator Column (Generator 컬럼용 68GeO2 합성 및 68Ga3+의 거동에 관한 연구)

  • Kim, Gun Gyun;Lee, Jun Young;Kim, Sang Wook;Hur, Min Gu;Yang, Seung Dae;Park, Jeong Hoon
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.189-192
    • /
    • 2016
  • $^{68}Ga$ has emerged as a promising candidate for non-invasive diagnostic imaging within Positron Emission Tomography (PET) because of its advantageous radiochemical characteristics ($t_{1/2}=68min$, ${\beta}^+$ yield ~89%). $^{68}Ga$ forms a stable chelation with various ligands and it is possible to be quickly and easily study using a $^{68}Ge/^{68}Ga$ generator. Commercial $^{68}Ge/^{68}Ga$ generators are chromatographic system using the inorganic materials such as alumina and tin dioxide which are employed as column matrixes for $^{68}Ge$. In this study, we tried out to make $^{68}Ge/^{68}Ga$ generator system with the $^{68}GeO_2$ microstructures for column matrix. $^{68}Ge$ tends to have stable bond with oxide as $^{68}GeO_2$ microstructures. The $^{68}GeO_2$ has been synthesized by hydrolysis of $GeCl_4$ (sol-gel method) and characterized by X-ray diffraction and scanning electron microscope for geometrical analysis. The stability of $GeO_2$ was tested using eluents with diverse solvents(water, ethanol and 0.1 N HCl). The radioactivity of $^{68}Ga^{3+}$ in eluate through $GeO_2$ was measured to prove a function as column material for a generator.

Surface Lapping Process and Vickers Indentation of Sapphire Wafer for GaN Epitaxy (GaN 증착용 사파이어 웨이퍼의 표면가공에 따른 압흔 특성)

  • Shin Gwisu;Hwang Sungwon;Kim Keunjoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.632-638
    • /
    • 2005
  • The surface lapping process on sapphire wafer was carried out for the epitaxial process of thin film growth of GaN semiconducting material. The planarization of the wafers was investigated by the introduction of the dummy wafers. The diamond lapping process causes the surface deformation of dislocation and micro-cracks. The material deformation due to the mechanical stress was analyzed by the X-ray diffraction and the Vickers indentation. The fracture toughness was increased with the increased annealing temperature indicating the recrystallization at the surface of the sapphire wafer The sudden increase at the temperature of $1200^{\circ}C$ was correlated with the surface phase transition of sapphire from a $-A1_{2}O_{3}\;to\;{\beta}-A1_{2}O_{3}$.

Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process (열처리 공정을 이용한 Si-doped β-Ga2O3 박막의 전기적 특성의 이해)

  • Lee, Gyeongryul;Park, Ryubin;Chung, Roy Byung Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.19-24
    • /
    • 2020
  • In this work, the electrical property of Si-doped β-Ga2O3 was investigated via a post-growth annealing process. The Ga2O3 samples were annealed under air (O-rich) or N2 (O-deficient) ambient at 800~1,200℃ for 30 mins. There was no correlation between the crystalline quality and the electrical conductivity of the films within the experimental conditions explored in this work. However, it was observed the air ambient led to severe degradation of the film's electrical conductivity while N2-annealed samples exhibited improvement in both the carrier concentration and Hall mobility measured at room temperature. Interestingly, the x-ray photoemission spectroscopy (XPS) revealed that both annealing conditions resulted in higher concentration of oxygen vacancy (VO). Although it was a slight increase for the air-annealed sample, high resistivity of the film strongly suggests that VO cannot be a shallow donor in β-Ga2O3. Therefore, the enhancement of the electrical conductivity of N2-annealed samples must be originated from something other than VO. One possibility is the activation of Si. The XPS analysis of N2-annealed samples showed increasing relative peak area of Si 2p associated with SiOx with increasing annealing temperature from 800 to 1,200℃. However, it was unclear whether or not this SiOx was responsible for the improvement as the electrical conductivity quickly degraded above 1,000℃ even under N2 ambient. Furthermore, XPS suggested the concentration of Si actually increased near the surface as opposed to the shift of the binding energy of Si from its initial chemical state to SiOx state. This study illustrates the electrical changes induced by a post-growth thermal annealing process can be utilized to probe the chemical and electrical states of vacancies and dopants for better understanding of the electrical property of Si-doped β-Ga2O3.

Constituents of the Fruits of Rumex japonicus with Inhibitory Activity on Aldose Reductase

  • Kim, Jong-Min;Jang, Dae-Sik;Lee, Yun-Mi;Lee, Ga-Young;Kim, Jin-Sook
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.1
    • /
    • pp.13-16
    • /
    • 2008
  • Five anthraquinones, emodin (1), ${\omega}$-hydroxyemodin (2), chrysophanol-8-O-${\beta}$-D-glucoside (3), emodin-8-O-${\beta}$-D-glucoside (4), and physcion-8-O-${\beta}$-D-glucoside (5), and five flavonoids, kaempferol-3-O-${\beta}$-D-glucoside (6), quercetin (7), quercitrin (8), isoquercitrin (9), and (+)-catechin (10), were isolated from the EtOAc-soluble extract of the fruits of Rumex japonicus. The structures of 1-10 were identified by spectroscopic methods including NMR studies. This is the first report on the isolation of compounds 3-5 from this plant. The isolates were subjected to in vitro bioassays to evaluate their inhibitory activities on the rat lens aldose reductase (RLAR), among which two anthraquinones (1 and 4), and five flavonols (5-9) showed significant activities on RLAR.

Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System (미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구)

  • Kyoung-Ho Kim;Heesoo Lee;Yun-Ji Shin;Seong-Min Jeong;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.500-504
    • /
    • 2023
  • In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

On the Reaction Kinetics of GaN Particles Formation from GaOOH (GaOOH로부터 GaN 분말 형성의 반응역학에 관하여)

  • Lee Jaebum;Kim Seontai
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.348-352
    • /
    • 2005
  • Gallium oxyhydroxide (GaOOH) powders were heat-treated in a flowing ammonia gas to form GaN, and the reaction kinetics of the oxide to nitride was quantitatively determined by X-ray diffraction analysis. GaOOH turned into intermediate mixed phases of $\alpha-\;and\;\beta-Ga_2O_3$, and then single phase of GaN. The reaction time for full conversion $(t_c)$ decreased as the temperature increased. There were two-types of rapid reaction processes with the reaction temperature in the initial stage of nitridation at below $t_c$, and a relatively slow processes followed over $t_c$ does not depends on temperatures. The nitridation process was found to be limited by the rate of an interfacial reaction with the reaction order n value of 1 at $800^{\circ}C$ and by the diffusion-limited reaction with the n of 2 at above $1000^{\circ}C$, respectively, at below $t_c$. The activation energy for the reaction was calculated to be 1.84 eV in the temperature of below $830^{\circ}C$, and decreased to 0.38 eV above $830^{\circ}C$. From the comparative analysis of data, it strongly suggest the rate-controlling step changed from chemical reaction to mass transport above $830^{\circ}C$.