• Title/Summary/Keyword: ${\beta}$-pinene

Search Result 191, Processing Time 0.026 seconds

Study on Seasonal Variation Characteristics of Forest Phytoncide in Ulsan Metropolitan Trails (계절에 따른 울산지역 산책로의 피톤치드 특성연구)

  • Park, Heung Jai;Yu, Bong Gwan;Park, Sun Ho;Lee, Jin Yeol;Hahm, Yoo Sik;Jeong, Seong Wook;Byeon, Ki Yeong;Kim, So Hee;Jung, Im Su;Lee, Mi Lim
    • Journal of Environmental Science International
    • /
    • v.22 no.11
    • /
    • pp.1415-1419
    • /
    • 2013
  • This study was conducted to investigate the seasonal variation characteristics of phytoncide in trail of Ulsan Metropolitan. Air samples were collected from May to December 2011. They were collected using Tenax Ta tube and phytoncides were detected and quantified using a Gas Chromatograph Mass Spectrometer (GC/MSD). This study are summarized as follows; The seasonal concentrations of phytoncide are Munsu Mt. 272.3 ${\mu}g/m^3$, Samho Mt. 192.4 ${\mu}g/m^3$, Shinbul Mt. 50.9 ${\mu}g/m^3$, Sibli Bamboo forest 22.4 ${\mu}g/m^3$ and Joongbu Fire Station 24.4 ${\mu}g/m^3$. In Munsu Mt., Samho Mt. and Shinbul Mt. major component ratio is ${\alpha}$-Pinene > ${\beta}$-Pinene+Myrcene >Limonene >Camphene > ${\gamma}$-Terpinene > ${\alpha}$-Terpinene. Bamboo forest and Joongbu fire station major component ratio is ${\alpha}$-Pinene >Limonene > ${\beta}$-Pinene+Myrcene >Camphene > ${\alpha}$-Terpinene. The variation of seasonal concentration is summer >spring >fall >winter. The phytoncide concentration of coniferous forest(Munsu Mt., Samho Mt.) is higher than broadleaf forest(Shinbul Mt.).

Volatile Components of Parsley Leaf and Seed (Petroselinum crispum) (파슬리의 잎과 씨의 휘발성 성분)

  • Kim, Young-Hoi;Kim, Kun-Soo;Hong, Chong-Ki
    • Applied Biological Chemistry
    • /
    • v.33 no.1
    • /
    • pp.62-67
    • /
    • 1990
  • The volatile oils of the fresh leaf and seed of parsley(Petroselinum crispum) were isolated by simultaneous steam distillation and extraction procedure. The compositions of the resulting oils were investigated by gas chromatography and gas chromatography-mass spectrometry. The volatile oil contents of leaf and seed were 0.06 % and 3.11 %, respectively. Fifty-eight components including 15 partially characterized components were identified in leaf oil and 23 components in seed oil. Seven of them are suggested as new parsley leaf volatiles. Terpenoids were represented as much as 46.4 % of total leaf volatiles and 49.3 % of total seed volatiles. The leaf volatiles contained a lot of myrcene(3.02%), 4-isopropenyl-1-methyl benzene(4.52%) and p-1,3,8-menthatriene(10. 49 % ), but the seed volatiles were characterized by greater quantities of the isomers, ${\alpha}-pinene$(22.28 %) and ${\beta}-pinene$(16.20 %), although these compounds were contained only trace in leaf volatiles. Of the components identified in both oils, the most abundant component was myristicin, constituting 21.80 % of the leaf volatiles and 47.54 % of the seed volatiles.

  • PDF

Studies on Essential Oils of Plants of Angelica Genus in Korea (I). -Essential Oils of Angelicae gigantis Radix- (Angelica속 생약의 정유성분에 관한 연구 (I). -참당귀의 정유성분-)

  • Chi, Hyung-Joon;Kim, Hyun-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.19 no.4
    • /
    • pp.239-247
    • /
    • 1988
  • Essential oil of the root of Angelica gigas Nakai (Umbelliferae) was investigated. Essential oil was obtained from the dried roots by steam distillation and fractionated by column chromatography. Each isolate or fraction was identified by GC, GC-MS and spectral analysis. It was found to contain eleven monoterpenes such as ${\alpha}-pinene,\;camphene,\;{\beta}-pinene,\;myrcene,\;{\alpha}-phellandrene,\;{\Delta}-3-carene,\;{\alpha}-terpinene,\;p-symene,\;limonene,\;{\gamma}-terpinene$ and terpinolene and also found to contain 4-vinylguauacol, myristicin, elemol, ${\beta}-eudesmol,\;{\alpha}-eudesmol,\;four\;sesquiterpenes\;involving\;{\Delta}-elemene$. Four sesquiterpenes and five sesquiterpene alcohols were tentatively identified by comparison of their mass spectra.

  • PDF

Changes in Volatile Compounds of Schizandra chinensis Fruits According to Drying and Extracting Methods (건조 및 추출방법에 따른 오미자 휘발성 성분의 변화)

  • Kim, Kwan-Su;Song, Ji-Sook;Bang, Jin- Ki
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • To understand the effects of drying conditions on changes of volatile compounds in fruits of Schizandra chinensis, we analyzed SDE (steam distillation and extraction) extract and Headspace vapor of fresh and dried samples using GC/MS (Gas chromatograph/Mass spectrometer). Contents of essential oils from samples with different drying conditions were 0.58% in fresh ones, 0.60% in freeze dried ones, and 0.30% in hot-air dried ones. In SDE extract, major volatile compounds in fresh samples were terpinen-4-ol(9.01%), ${\gamma}-terpinene(7.02%),\;{\beta}-myrcene(7.55%)$, unidentified sesquiterpenes(28.48%), showing almost the same composition as that in freeze-dried ones, but those in hot-air dried samples at $60^{\circ}C$ were ${\gamma}-terpinene(5.40%),\;{\alpha}-elemene(8.28%)$, unidentified sesquiterpenes(50.38%), indicating the chemical changes during drying procedure. In Headspace vapor, major compounds in fresh samples were ${\beta}-myrcene(22.05%),\;{\gamma}-terpinene(9.47%),\;{\alpha}-pinene(8.91%)$, sabinene(8.48%), which were different from those in SDE extract. In chemical compositions of volatile compounds in dried samples, ${\beta}-myrcene,\;{\alpha}-terpinene$ decreased in the order of freeze-drying > hot-air drying at $60^{\circ}C$ > hot-air drying at $60^{\circ}C$, and ${\alpha}-ylangene,\;{\alpha}-pinene$, camphene increased in the reverse order of the former. We observed the changes of the contents and compositions of essential oils compounds during drying procedure, especially a decrease in monoterpenes and alcohols and an increase in sesquiterpenes with relatively weak volatility.

  • PDF

The Effects of Pseudotsuga menziesii Monoterpenoids on Nitrification (Pseudotsuga menziesii의 Monoterpenoid가 질화작용에 미치는 효과)

  • ;Jean H. Langenheim
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.251-260
    • /
    • 1994
  • Nitrification potential bioassay and terpenoid analyses were performed to determine the roles of terpenoid as an inhibitor of nitrification in the Douglas fir (Pseudotsuga menziesii) forests. The effect of terpenoids in the forest floor was also tested by adding $10{\mu}g/ml$ of four terpenoids(${\alpha}-pinene,{\beta}-pinene,{\gamma}-terpinene, and terpinolene) to mineral soils. The amount of terpenoids in the litter was higher than that in the soil and varied over time, but the amount of terpenoids in the soils was relatively constant. The correlation between the amount of terpenoids in the litter and ammonium oxidation was in inverse proportion to that in the mineral layers $(r^2=0.678)$. Inhibition of ammonium oxidation by terpenoids in the litter was always higher than in the mineral layer, but nitrite oxidation was different from the ammonium oxidation. The fact that there was greater nitrate production from ammonium in the mineral layer than in the forest floor layer seems to be due to the less amounts of terpenoids in the mineral layer. The result of the experiment in which four terpenoids were added to the mineral layer suggests that, after some lag time, the four terpenoids were effective in inhibiting ammonium oxidation. However, nitrite oxidation did not appear to be affected by the four terpenoids. Accordingly, all of our results suggested that terpenoids in Douglas fir forests apparently would act as a part of the inhibitors of nitrification.

  • PDF

Comparison of Phytoncide (monoterpene) Concentration by Type of Recreational Forest (산림휴양지 유형에 따른 피톤치드(모노테르펜) 농도 비교)

  • Lee, Yong-Ki;Woo, Jung-Sik;Choi, Si-Rim;Shin, Eun-Sang
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.4
    • /
    • pp.241-248
    • /
    • 2015
  • Objectives: This study was conducted to provide scientific and effective information on phytoncides, which are associated with forest healing, and to activate recreational forests. Methods: The target sites were natural recreation forests, a forest park and an arboretum, and the control sites were three urban parks. The samples were collected at a volume of 6.0 L and a flow rate of 0.1 L/min for one hour using a low volume pump and the solid adsorbent sampling method. The phytoncide compounds adsorbed in the Tenax TA tube were analyzed by a automatic heat desorption unit and GC-MS. Results: By type of recreational forest, the annual concentrations of phytoncide (monoterpene) for the forest park showed the highest concentration with $1.450{\mu}g/m^3$, while those for the arboretum showed the lowest concentration at $0.892{\mu}g/m^3$, and thus the concentration of the forest park was approximately 1.6 times higher than the arboretum. The season showing the highest concentration of phytoncides was summer (June) and the forest park was the highest among the recreational forests. The concentrations of major components for phytoncide showed in descending order: ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene. The seasonal concentration of ${\alpha}-pinene$, camphene and ${\beta}-pinene$ by type of recreational forest increased in April, which is characterized by low temperature and humidity, and the seasonal concentration of camphene decreased with higher humidity. The meteorological factors which had the high correlation with the concentration of total terpene were temperature and humidity. $CO_2$ and $O_2$ showed an inverse correlation. Conclusion: The major components of phytoncide were ${\alpha}-pinene$, ${\beta}-pinene$, camphene, 3-carene and limonene in descending order of concentration. Further and systematic study on the chemical nature of individual phytoncides, and on the effect of phytoncides on humans needs to be performed.

Comparison of Volatile Compounds in Plant Parts of Angelica gigas Nakai and A. acutiloba Kitagawa (참당귀와 일당귀의 부위별 휘발성 정유성분 비교)

  • Cho, Min-Gu;Bang, Jin-Ki;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.5
    • /
    • pp.352-357
    • /
    • 2003
  • Volatile flavor compounds Angelica gigas Nakai and Angelica acutiloba Kitagawa were extracted by SDE (simultaneous steam distillation & extraction) using the mixture of n-pentane and diethylether (1:1, v/v) as an extract solvent and analyzed by GC-FID and GC-MS. The amount of essential oils of top part and root in Angelica gigas were obtained in 0.063% (v/w) and 0.389% (v/w) yields as a fresh weight base, respectively. The main compounds in top parts and the root were identified as nonane (7.51% and 24.49%, respectively), ${\alpha}-pinene$ (14.64% and 31.75%), limonene+${\beta}-phellandrene$ (14.01% and 9.66%), ${\gamma}-terpinene$ (7.85% and 1.20%), germacrene-d (5.85% and 0.22%), (E,E)-${\alpha}-farnesene$ (6.05% and 1.40%), ${\beta}-eudesmol$ (5.26% and 1.84%). Although these compounds were present in both parts. The results showed large differences in. the concentrations of them much varied. The amount of essential oils stem and leaf obtained (0.068% and 0.127% in A. gigas) and (0.153% and 0.243% in A. acutiloba) yields as a fresh weight base, respectively. More than 18 and 32 components in stem and leaf have been identified, which of main components in A. gigas were ${\alpha}-pinene$, myrcene, limonene, germacrene-d, eudesmol and butylphthalide, but germacrene-d and butylphthalide contents were also different in stem and leaf. And more than 21 and 32 components in A. acutiloba were ${\gamma}-terpinene$ and butylphthalide. Volatile compounds were very different in both species.

Effects of Antioxidant and Flavor Compionents of Zingiber mioga Rosc (양하의 항산화 효과 및 향기성분)

  • Lee, Jang-Won;Chon, Sang-Uk;Han, Seung-Kwan;Ryu, Jeong;Choi, Dong-Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • In order to promote utilization of the Yangha (Zinger mioga Rosc.) as functional food and natural spices, and 95.93%, from the dried one 7.63%, and from powder 9.81%, respectively. Crude protein content from the Yangha powder was 11.21%, and contents of crude fat, crude ash and crude fiber were 2.44%,10.78%, and 14.47%, respectively. Most of compositions from Yangha powder were higher than those from raw and the dried one, except fer water content. Antioxidative effect was investigated through Rancimat and DPPH methods. Oxidative stability of Yangha powder was the highest of4.21Al. Furthermore, the free radical scavenging activity of Yangha powder (76.61%) was higher than that of raw (49.35%) or the dried one (61.78%). Volatile flavor compounds of Yangha was extracted by steam distillation and extraction method. The extracts were analyzed and identified by gas chromatography and GC-MS spectrometry. One hundred twenty two volatile flavor components were identified, and the major component was terpene compounds including ${\alpha}$-pinene, ${\beta}$-pinene, ${\beta}$-phellandrene, 1,4-terpineol, and ${\beta}$-terpinene.

Analysis of Enantiomeric Composition of Chiral Flavor Components from Dried Ginger (Zingiber afficinale Roscoe) (건생강에 함유된 키랄성 향기성분의 이성질체 조성 분석)

  • Seo, Hye-Young;No, Ki-Mi;Shim, Seong-Lye;Ryu, Keun-Young;Han, Kyu-Jae;Gyawali, Rajendra;Kim, Kyong-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.874-880
    • /
    • 2006
  • The volatile compounds of Zingiber officinale Roscoe were extracted by simultaneous steam distillation and extraction (SDE) method and identified with gas chromatigraphy/mass spectrometer (GC/MS) analysis. Enantiomeric compositions of chiral compounds were determined by multidimensional gas chromatography/mass spectrometer (MDGC/MS). A total of 57 compounds were indentified and quantified, including zingiberene, ${\beta}-sesquiphellandrene$, ${\beta}-bisabolene$, $(E,E)-{\alpha}-farnesene$ and ${\alpha}-curcumene$. Among them, zingiberene (38.41%) was founds as the predominantly abundant component. ${\alpha}-Pinene$ and nerolidol in dried ginger were detected by high enantiomeric purity (>96%) for (S)-form, and ${\beta}-pinene$ was detected only (R)-form. The enantiomeric composition of ${\alpha}-terpineol$ revealed 72.0% for (R)-form, and linalool and 4-terpineol showed mixtures of both enantiomers. (S)-Enantiomer was the major enantiomer of limonene having enatiomeric excess of 17.2%. Hence the enantiomeric composition of these compounds can be used as parameter for authenticty control of Zingiber officinale.

Chemical Composition and Antimicrobial Activity of Cone Volatile oil of Cupressus macrocarpa Hartwig from Nilgiris, India

  • Manimaran, S.;Themozhil, S.;Nanjan, M.J.;Suresh, B.
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.279-282
    • /
    • 2007
  • The aim of the present study was to investigate the various chemical components present in the cone volatile oil of Cupressus macrocarpa and also determine its antimicrobial activity. Totally 13 compounds were identified with 99.99% by GC-MS analysis. The major compounds identified were terpinene-4-ol (19.42%), dinopol (15.63%), ${\alpha}$-pinene (13.58%), and ${\beta}$-pinene (12.16%). The antimicrobial activity was carried out for the oil and a 2% cream formulation using cup plate method by measuring the zone of inhibition. The gram positive organisms used were Bacillus subtilis, Staphylococcus aureus, Bacillus megaterium, and Bacillus cogulans. The gram negative organisms used were Escherichia coli, Kleibseilla pneumonia, Pseudomonas aeruginosa and Salmonella typhi. In vitro antifungal studies were also carried out by using organisms, Candida albicans, Aspergillus flavus, Trichoderma lignorum and Cryptococcus neoformans. The standard drugs used were penicillin ($100{\mu}g/mL$), gentamycin ($100{\mu}g/mL$) and griseofulvin ($100{\mu}g/mL$) for gram positive bacteria, gram negative bacteria and fungi respectively. Both oil and cream formulation showed good activity against fungi than bacteria. This study is being reported for the first time on cone volatile oil of this plant.