• Title/Summary/Keyword: ${\beta}$-pinene

Search Result 191, Processing Time 0.027 seconds

Identification of volatile flavor compounds in Jeju citrus fruits (제주감귤류의 휘발성 향기성분의 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.7
    • /
    • pp.977-988
    • /
    • 2016
  • The volatile flavor compounds in five Jeju citrus fruit varieties (Cheonhyehyang, Hallabong, Jinjihyang, Hwanggeum hyang and Redhyang) were extracted by simultaneous distillation-extraction (SDE) using solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by using gas chromatography-mass spectrometry (GC-MS). The number of aroma compounds were identified with : 104 (4,939.77 mg/kg) in Cheonhyehyang, 98 (3,286.38 mg/kg) in Hallabong, 105 (3,317.56 mg/kg) in Jinjihyang, 102 (4,293.39 mg/kg) in Hwanggeumhyang, and 108 (4,049.94 mg/kg) in Redhyang. The detected main volatile compounds were; limonene, sabinene, ${\beta}$-myrcene, ${\alpha}$-pinene, ${\beta}$-pinene, linalool, 4-terpineol, ${\alpha}$-terpineol, (E)-${\beta}$-ocimene and ${\gamma}$-terpinene. Among the identified volatiles compounds, ethyl-benzene, nonanol, 1-p-menthen-9-al, (E)-isocarveol, methyl salicylate, ${\alpha}$-terpinen-7-al, perilla alcohol, and ethyl-dodecanoate were detected in Cheonhyehyang. only Furthermore, ${\beta}$-chamigrene and ${\alpha}$-selinene were in Hallabong only; 3-hydroxybutanal, (E)-2-nonenal, isoborneol, octyl acetate, (E)-2-undecenal, ${\beta}$-ylangene and guaia-6,9-diene in Jinjihyang. ${\rho}$-Cymenene, ${\beta}$-thujone, selina-4,11-diene and (E,E)-2,6-farnesol in Hwanggeumhyang only; and ${\rho}$-cymen-8-ol, bornyl acetate, carvacrol, bicycloelemene, ${\alpha}$-cubebene and 7-epi-${\alpha}$-selinene in Redhyang only. This study confirmed the differences in composition and content of volatile aroma components in five varieties of Jeju citrus fruits.

Studies on Essential Oils of Plants of Angelica Genus in Korea ( II ). -Essential Oils of the Root of Angelica tenuissima- (Angelica속 생약의 정유 성분에 대한 연구 ( II ). -고본의 정유 성분-)

  • Kim, Hyun-Soo;Chi, Hyung-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 1989
  • In continuation of our studies on essential oils of Angelica genus(Umbelliferae), We report on the components of essential oils obtained from the root of Angelica tenuissima Nakai(藁子). Oils were obtained from the dried roots by steam distillation and fractionated by column chromatography. Each isolate or fraction was identified by GC, GC-MS and spectral analysis. Essential oils of the root of A. tenuissima(Gaoben) were found to contain $\alpha-pinene,\;camphene,\;\beta-pinene,\;myrcene,\;\alpha-phellandrene,\;\Delta-3-carene,\;p-cymene,\;limonene,\;\gamma-terpinene,\;terpinolene,\;4-vinylguauacol,\;\gamma-elemene$, one aromatic compound, three unidentified sesquiterpene alcohols, butylidenephthalide, senkyunolide and Z-ligustilide which was the most abundant compound comprising 75% of the whole oil. Also butylphthalide and hydroxybutylidenephalide were tentatively identified.

  • PDF

Comparison of Fragrance and Chemical Composition of Essential Oils in Gom-chewi (Ligularia fischeri) and Handaeri Gom-chewi (Ligularia fischeri var. spicifoprmis) (곰취(Ligularia fischeri)와 한대리곰취(Ligularia fischeri var. spicifoprmis) 정유의 향취 및 향기성분 비교)

  • Yeon, Bo-Ram;Cho, Hae Me;Yun, Mi Sun;Jhoo, Jin-Woo;Jung, Ji Wook;Park, Yu Hwa;Kim, Songmun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1758-1763
    • /
    • 2012
  • This study was conducted to compare fragrance and volatile chemicals of essential oils in Gom-chewi (Ligularia fischeri) and Handaeri Gom-chewi (Ligularia fischeri var. spicifoprmis). Essential oils were extracted by steam distillation of leaves of Gom-chewi (GC) and Handaeri Gom-chewi (HGC), after which samples were collected by solid-phase micro extraction and the compositions of the essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS). The yields of the essential oils in GC and HGC were 0.12% and 0.04%, respectively, and the threshold levels of the essential oils in GC and HGC were 0.01% and 0.1%, respectively. There were 19 constituents of the essential oil of Gom-chewi: 14 carbohydrates, 4 alcohols, and 1 acetate, and the major constituents were L-${\beta}$-pinene (36.02%), D-limonene (25.64%), ${\alpha}$-pinene (24.85%) and ${\beta}$-phellandrene (5.39%). In the essential oil of HGC, 25 constituents were identified: 17 carbohydrates, 4 alcohols, 3 acetates, and 1 N-containing compound, and the major constituents of HGC were D-limonene (39.74%), L-${\beta}$-pinene (35.43%) and ${\alpha}$-pinene (11.94%). The minor constituents of HGC were ${\rho}$-cymene, ${\gamma}$-muurolene, ${\gamma}$-cadinene, germacrene D, ingol 12-acetate and butyl 9,12,15-octadecatriene and nimorazole were not identified in the GC essential oil. Overall, the results showed that the fragrance and chemical compositions of essential oils in GC and HGC differed, suggesting that both essential oils could be used for the development of perfumery products.

Studies on Essential Oil of Plants of Angelica Genus in Korea(III) -Essential Oils of Angelicae dahuricae Radix- (Angelica속 생약의 정유성분에 관한 연구(III) -백지의 정유성분-)

  • Kim, Hyun-Soo;Chi, Hyung-Joon
    • Korean Journal of Pharmacognosy
    • /
    • v.21 no.2
    • /
    • pp.121-125
    • /
    • 1990
  • Essential oil of the root of Angelica dahurica Benth et Hook(Umbelliferae) was investigated. Essential oil was obtained from the dried roots by steam distillation and fractionated by column chromatography. Each isolate or fraction was identified by GC, GC-MS and spectral analysis. It was found to contain eleven monoterpenes such as ${\alpha}-pinene(4.74%),\;campben, {\beta}-pinene,\;myrcene,\;{\alpha}-phellandrene,\;{\delta}-3-carene(39.4%),\;{\alpha}-terpinene,\;{\rho}-cymene,\;{\beta}-phellandrene,\;{\alpha}-terpinene,\;terpinolene\;and\;also\;found\;to\;contain\;4-vinylguaiacol,\;iso-elemicin,\;{\beta}-elemene$, caryophyllene, ligustilide, osthol and seven tentatively identified sesquiterpenes.

  • PDF

Allelopathic Effect of Volatile Extracts from Eupatorium rugosum (서양등골나물 휘발성 추출물의 알레로파시 효과)

  • Kil, Ji-Hyon;Shim, Kew-Cheol;Lee, Ho-Jun
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.135-139
    • /
    • 2005
  • This study was carried out to find the allelopathic effect of volatile materials released from Eupatorium rugosum. The GC method was employed for analysis of volatile materials from E. rugosum and 49 chemical substances were identified such as $\beta$-caryophyllene, $\alpha$-terpinenol, chamazulene, bornyl acetate, $\alpha$-pinene, etc. including unidentified three chemicals. Germination test in Phaseolus radiatus was done to find the inhibition effect of volatile materials using some chemicals which were proved to be important component or much amounts ones in E. rugosum. It was strongly inhibited by linalool and terpinen-4-ol. Seedling elongation and radicle growth of that were proportionally inhibited by the concentration of the essential oil, especially $\alpha$-pinene and bornyl acetate. Biomass of receptor plant was slightly decreased more than 58 ${\mu}l$ of the extract in case of $\alpha$-pinene, while it was decreased more than 19 ${\mu}l$ of that in bornyl acetate but it was shown non-significant. From the above results, it was found that volatile materials from E. rugosum showed a allelopathic effect and also $\alpha$-pinene, bornyl acetate, linalool and terpinen-4-ol used in bioassay were some of major allelochemicals in germination inhibition and especially linalool and terpinen-4-ol are prominent effect on growth inhibition of other plant.

Comparison of Essential Oil Composition of Artemisia iwayomogi and Artemisia capillaris (더위지기와 사철쑥의 정유성분 조성 비교)

  • Hong, Chul-Un
    • Applied Biological Chemistry
    • /
    • v.47 no.1
    • /
    • pp.124-129
    • /
    • 2004
  • The composition of essential oils isolated from the aerial parts of Artemisia iwayomogi Kitamura and Artemisia capillaris Thunberg collected from two diffenent cultivation area, respectively, was analyzed by GC and GC-MS. Sixty components were identified in oils from A. iwayomogi. The major components of A. iwayomogi oil collected from one area (Sample A) were iso-pinocamphone (31.64%), 1,8-cineo1e (21.55%), ${\beta}-pinene$ (4.46%), pinocarvone (3.72%), myrtenal (3.42%) and trans-pinocarve1 (3.14%), and the major components of the oil from the other area (Sample B) were camphor (26.99%), 1,8-cineo1e (21.55%), ${\alpha}-terpineol$ (7.63%), borneol (4.10%), camphene (3.97%) and artemisia ketone (3.84%). Eighty components were identified in oils from A. capillaris. The major components were capillene $(26.01{\sim}30.31%)$, ${\beta}-pinene(8.55{\sim}18.38%)$, ${\beta}-caryophyllene(8.80{\sim}13.70%)$, ${\beta}-himachalene(1.67{\sim}5.57%)$, $cis,trans- {\alpha}-farnesene(2.10{\sim}7.38%)$ and germacrene D $(2.27{\sim}5.46%)$ and there was no difference in oil composition of A. capillaris between two cultivation area.

Volatile Flavor Components of Wild Chopi (Zanthoxylum piperitum De Candolle) Leaf (야생 초피(Zanthoxylum piperitum De Candolle)잎의 향기성분)

  • 박준희;차원섭;오상룡;조영제;이원영
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.5
    • /
    • pp.483-489
    • /
    • 2000
  • Wild Chopi leaves were harvested near Chounghwa Mt. Sangju city in Kyungpook province. Chopi leaves were dried naturally and crushed with and without blanching. From mechanical analysis(GC). fifty five peaks were identified as volatile materials in no blanching leaf. Among the fifty five peaks, twenty three peaks were identified as hydrocarbones(dodecane, sabinene, myrcene etc.), ten peaks as alcohols (isobutylalcohol. cis-pentenol, 1-pentenol, 1-penten-3-ol etc.), seven peaks as aldehydes (3-methylbua-tanal, hexanal, 2,6-dimethyl hept-5-al etc.), four peaks as ketones(3-hydroxy-2-butanone, 2-nonanone, 2-undecanone, 2-tridecanone) and six peaks as esters ( cis-3-hexenyl acetate, linalyl acetate. citronellyl acetate, nervy acetate etc.). Other peaks were founded as 3-cyano-2,5-dimethylpyrazine, dimethyl sulfide, chloroform, 1,8 cineole. Thirty five peaks were identified as volatile materials in blanching leaf. Twenty peaks were identified as hydrocarbones(1,1-oxybis-ethane, $\alpha$-pinene, camphene. myrcene, $\beta$-phellan-drene, $\beta$-caryophyllene etc.), as alcohol(L-linalool, (-)-isopulgerol, $\alpha$-terpineol. citronellol etc.), as aldehydes(nonanal, citronellal), as ketones(2-undecanone, 2-tridecanone etc.) and as esteres(citronellyl acetate. cis-3-hexenyl acetate, neryl acetate etc.). Other peaks were found as 3-cyano-2,5-dimethyl-pyrazine. The amount of volatile materials such as $\alpha$-pinene, myrcene, $\beta$-phellanderene, L-linalool, citronellal, citronellyl acetate, $\beta$-caryophyllene were detected abundantly among the volatile materials.

  • PDF

Analyses of Lipid and Volatile Components in Juniper Seed(Juniperus rigida Sieb. et Zucc.) (노간주나무(Juniperus rigida Sieb. et Zucc.) 열매의 지질 및 향기성분 분석)

  • 신원선;하재호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.6
    • /
    • pp.795-800
    • /
    • 2003
  • Juniper seed oil extracted by steam distillation has been a useful material as a medicine, insect repellant, and flavorant for alcoholic beverages. As the result of juniper seed oil analysis, the acid value, saponification value, unsaponification value phosphorus contents, and refractive index were 91.04, 85.15, 15.52, 11.04 ppm, 1.47, respectively The content of neutral lipids, glycolipids and phospholipids were 85.4%, 12.2% and 2.4%, respectively. From the fatty acids analysis, the major fatty acids from the juniperseed harvested in August were lauric acid (31.9% ), palmitic acid (28.0% ), stearic acid (9.9%), and oleic acid (8.5%) . However, maturated seed oil harvested in October mainly consists of linoleic acid (47.6%), linolenic acid (17.6%), oleic acid (16.1%), and palmitic acid (11.9%). Upon these analyses, fatty acids composition of juniper seed oil depends on the seed maturation. According to volatile compounds analyses of essential oil extracted using steam distillation method and SPME, the major compounds were $\beta$-myrcene, $\alpha$-pinene, $\beta$-farnescene, $\beta$-cubebene, limonene, trans-caryo-phyllene, $\alpha$-terpinolene, camphene, sabinene, and $\beta$-pinene.

Determination of the volatile flavor components of orange and grapefruit by simultaneous distillation-extraction (연속수증기증류추출법에 의한 오렌지와 자몽의 휘발성 유기화합물 확인)

  • Hong, Young Shin;Kim, Kyong Su
    • Food Science and Preservation
    • /
    • v.23 no.1
    • /
    • pp.63-73
    • /
    • 2016
  • The volatile flavor components of the fruit pulp and peel of orange (Citrus sinensis) and grapefruit (Citrus paradisi) were extracted by simultaneous distillation-extraction (SDE) using a solvent mixture of n-pentane and diethyl ether (1:1, v/v) and analyzed by gas chromatography-mass spectrometry (GC-MS). The total volatile flavor contents in the pulp and peel of orange were 120.55 and 4,510.81 mg/kg, respectively, while those in the pulp and peel of grapefruit were 195.60 and 4,223.68 mg/kg, respectively. The monoterpene limonene was identified as the major voltile flavor compound in both orange and grapefruit, exhibiting contents of 65.32 and 3,008.10 mg/kg in the pulp and peel of orange, respectively, and 105.00 and 1,870.24 mg/kg in the pulp and peel of grapefruit, respectively. Limonene, sabinene, ${\alpha}$-pinene, ${\beta}$-myrcene, linalool, (Z)-limonene oxide, and (E)-limonene oxide were the main volatile flavor components of both orange and grapefruit. The distinctive component of orange was valencene, while grapefruit contained (E)-caryophyllene and nootkatone. $\delta$-3-Carene, ${\alpha}$-terpinolene, borneol, citronellyl acetate, piperitone, and ${\beta}$-copaene were detected in orange but not in grapefruit. Conversely, grapefruit contained ${\beta}$-pinene, ${\alpha}$-terpinyl acetate, bicyclogermacrene, nootkatol, ${\beta}$-cubebene, and sesquisabinene, while orange did not. Phenylacetaldehyde, camphor, limona ketone and (Z)-caryophyllene were identified in the pulp of both fruits, while ${\alpha}$-thujene, citronellal, citronellol, ${\alpha}$-sinensal, ${\gamma}$-muurolene and germacrene D were detected in the peel of both fresh fruit samples.

Production of Phytoncide from Korean Pine Cone Waste by Steam Distillation (잣송이 부산물로부터 수증기 증류법에 의한 피톤치드의 추출)

  • Kim, Bae yong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.648-658
    • /
    • 2015
  • Extraction of phytoncide oil from korea pine cone waste without damaging the pine cone tree itself was investigated using a steam distillation method. Also various components in the extracted phytoncide oil were separated using a column chromatography method. The extraction of phytoncide oil was effectively proceeded, and the maximum production yield of phytoncide oil could be obtained under $100^{\circ}C$ of distillation temperature and within 30 minute of distillation time. According to chemical analysis, it was found that the phytoncide oil from korea pine cone waste was consisted of more than 12 components such as ${\alpha}$-pinene, ${\beta}$-pinene, D-limonene, as main components. In addition, the aqueous hydrogel containing other components such as verbenone, ${\alpha}$-terpinieol, fenchol, different from components of phytoncide oil itself could be obtained through the steam distillation.