• Title/Summary/Keyword: ${\beta}$-ketothiolase

Search Result 9, Processing Time 0.02 seconds

Expression Analysis of ${\beta}$-Ketothiolase and Acetoacetyl-CoA Reductase of Rhodobacter sphaeroides

  • KHO, DHONG HYO;CHEOL YUN JEONG;JEONG JUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1031-1037
    • /
    • 2001
  • By a sequential action of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, two molecules of acetyl-CoA re converted into D-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyryl-CoA, a substrate for PHB synthase to form poly-3-hydroxybutyrate (PHB) of rhodobacter sphaeroides. The ${\beta}$-ketothiolase gene, phbA, and acetoacetyl-CoA reductase gene, phbB, were cloned and analyzed for their expression. Enzyme activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase showed constitutive levels during aerobic and photoheterotrophic growth of R. sphaeroides. In addition, no difference of each enzyme activity was observed between cells grown aerobically and photoheterotrophically. The constitutive level of the enzyme activities are regulated according to the growth phases along with growth conditions. Thus, phbAB expression is not determinative in regulating the PB content. On the other hand, phbA-deleted cell AZI accumulated only $10\%$ PHB of the wild-type, and an elevated dosage of phbAB in trans in R. sphaeroides resulted in a higher content of PHB, indicating that phbAB codes for the enzymes responsible for providing the main supply of subsyrate for PHB synthase. PHB formation by an alternative pathway that does not does not depend on the phbA-and phbB-coding enzymes is also proposed.

  • PDF

Partial Purification and Characterization of ${\beta}$-Ketothiolase from Alcaligenes sp. SH-69

  • Oh, Deok-Hwan;Chung, Chung-Wook;Kim, Jeong-Yoon;Rhee, Young-Ha
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.360-364
    • /
    • 1997
  • A ${\beta}$-ketothiolase was purified 180-fold from the cell extracts of Alcaligenes sp. SH-69 by a series of chromatography on DEAE-Dephadex A-50, Sephacryl S-200, and hydrozyapatitie columns, The optimum pH values of the partially purified enzyme were 7.5 for condensation reaction and 8.3 for thiolysis reaction were estimated to be 0.12mM and $18.7\;{\mu}M$, respectively. The $K_m$ valued for acetoacetyl-CoA and free CoASH in the thiolusis in the condensation reaction was 0.70mM. The condensation reaction of the ${\beta}$-ketothiolase was inhibited even by low concentrations of free CoASH($K_i=30.4{\mu}M$). Pretreatment of the enzyme with NADH and NADPH markedly inhibited the thiolysis reaction of the enzyme. The potent inhibition of the enzyme by sulfhydryl reagents suggests the involvement of cystein residue in the active site.

  • PDF

Enzymatic Characteristics of Biosynthesis and Degradation of Poly-$\beta$-hydroxybutyrate of Alcaligenes latus

  • Kim, Tae-Woo;Park, Jin-Seo;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.425-431
    • /
    • 1996
  • The enzymatic characteristics of Alcaligenes latus were investigated by measuring the variations of various enzyme activities related to biosynthesis and degradation of poly-${\beta}$-hydroxybutyrate (PHB) during cultivation. All PHB biosynthetic enzymes, ${\beta}$-ketothiolase, acetoacetyl-CoA reductase, and PHB synthase, were activated gradually at the PHB accumulation stage, and the PHB synthase showed the highest value among three enzymes. This indicates that the rate of PHB biosynthesis is mainly controlled by either ${\beta}$-ketothiolase or acetoacetyl-CoA reductase rather than PHB synthase. The enzymatic activities related to the degradation of PHB were also measured, and the degradation of PHB was controlled by the activity of PHB depolymerase. The effect of supplements of metabolic regulators, citrate and tyrosine, was also investigated, and the activity of glucose-6-phosphate dehydrogenase was increased by metabolic regulators, especially by tyrosine. The activities of ${\beta}$-ketothiolase and acetoacetyl-CoA reductase were also activated by citrate and tyrosine, while the activity of PHB depolymerase was depressed. The increased rate and yield of PHB biosynthesis by metabolic regulators may be due to the increment of acetyl-CoA concentration either by the repression of the TCA cycle by citrate through product inhibition or by the activation of sucrose metabolism by the supplemented tyrosine.

  • PDF

Defects in Ketone Body Metabolism and Pregnancy

  • Fukao, Toshiyuki
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.18 no.3
    • /
    • pp.69-77
    • /
    • 2018
  • Pregnancy and delivery pose a high risk of developing metabolic decompensation in women with defects of ketone body metabolism. In this review, the available reported cases in pregnancy are summarized. It is very important to properly manage women with defects of ketone body metabolism during pregnancy, especially nausea and vomiting in the first trimester of pregnancy, and during labor and delivery. Pregnant women with deficiencies of HMG-CoA lyase or succinyl-CoA:3-ketoacid CoA transferase (SCOT) often experience metabolic decompensations with nausea and vomiting of pregnancy, often requiring hospitalization. For successful delivery and to reduce stresses, vaginal delivery with epidural anesthesia or elective cesarean delivery with epidural or spinal anesthesia are recommended for women with HMG-CoA lyase and SCOT deficiency. In beta-ketothiolase deficiency, four pregnancies in three patients had favorable outcomes without severe metabolic problems.

  • PDF

Investigation of Regulatory Mechanism of Flux of Acetyl-CoA in Alcaligenes eutrophus Using PHB-negative Mutant and Transformants Harboring Cloned phbCAB Genes

  • Jung, Young-Mi;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.215-222
    • /
    • 1997
  • The regulatory mechanism of the flux of acetyl-CoA in Alcaligenes eutrophus in unbalanced growth conditions was investigated using a PHB-negative mutant and transformants reintroduced PHB-biosynthesis enzymes through the transformation of cloned phbCAB genes. The PHB-negative mutant was defected absolutly in PHB synthase but partially in ${\beta}$-ketothiolase and acetoacetyl-CoA reductase, and excreted substantial amount of pyruvate to culture broth at late growth phase. The excretion was due to the inhibitory effect of acetyl-CoA on the activity of pyruvate dehydrogenase. The cloned phbC and phbCAB genes were transformed to the PHB-negative mutant strain to reintroduce PHB biosythesis enzymes. Pyruvate excretion could be decreased substantially but not completely by transformation of PHB synthase alone, while pyruvate excretion was ceased by transformation of all three PHB biosynthesis enzymes. To identify the most critical PHB biosynthesis enzyme influencing on the flux of acetyl-CoA, the effect of the variation of PHB biosynthesis enzymes on pyruvate dehydrogenase was investigated. ${\beta}$-Ketothiolase influenced the activity of pyruvate dehydrogenase more sensitively than PHB synthase. ${\beta}$-Ketothiolase, the first step enzyme of PHB biosynthesis that condense acetyl-CoA to acetoacetyl-CoA, seems to be the major enzyme determining the flux of acetyl-CoA to PHB biosynthesis or TCA cycle, and the rate of PHB biosynthesis in A. eutrophus.

  • PDF

Why do Chickpea (Cicer arietinum L. cv. Tyson) Bacteroids Contain Little Poly-β-Hydroxybutyrate?

  • Lee, Hoi-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Poly-${\beta}$-hydroxybutyrate (PHB) and enzymes related PHB metabolism have been measured in nitrogen-fixing symbiosis of chickpea and cowpea plants. Bacteroids from chickpea and cowpea contained PHB to 0.8% and 43% of their dry weight, respectively, whereas the free-living cells CC 1192 and I 16 produced $285{\pm}55mg$ and $157{\pm}18mg$ of PHB g (dry weight)$^{-1}$. To further understand why chickpea bacteroids contained little PHB, the enzyme activities of PHB metabolism (3-ketothiolase, acetoacetyl-CoA reductase, PHB depolymerase, and 3-hydroxybutyrate dehydrogenase), the TCA cycle (malate dehydrogenase, citrate synthase, and isocitrate dehydrogenase), and related reactions (malic enzyme, pyruvate dehydrogenase, and glutamate:2-oxoglutarate transaminase) were compared in extracts from chickpea and cowpea bacteroids and the respective free-living bacteria. Significant differences were observed between chickpea and cowpea bacteroids and between the bacteroid and free-living forms of CC 1192, with respect to the capacity for some of these reactions. It is indicated that a greater potential for oxidizing malate to oxaloacetate in chickpea bacteroids could be a factor that favors the utilization of acetyl-CoA in TCA cycle rather than for PHB synthesis.

  • PDF

Ketolytic Defects in Children and Adolescents (소아청소년기의 케톤분해이상질환군)

  • Choi, Joong Wan;Ahn, Seok Min;Kim, Young Han;Baek, Joon Woo;Ryu, Hye Won;Bae, Eun Joo;Lee, Hong Jin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.15 no.3
    • /
    • pp.147-154
    • /
    • 2015
  • Purpose: 3HB and AcAc are two ketone bodies that can be used as energy source in brain via succinyl-CoA:3-ketoacid CoA transferase (SCOT) and mitochondrial acetoacetyl-CoA thiolase (beta-ketothiolase, T2), called ketolysis. In case of malfunction of these enzymes, ketolysis cannot occur fluently causing various clinical manifestations. We want to know the numbers of patients and clinical manifestations of ketolytic defects in Korea. Material: For 67 patients of ketolytic defects out of 2794 patients that have done urine organic acid analysis, we analyzed clinical manifestations and age distribution. The study period was from January 2007 to September 2015. Method: To confirm persistency of ketonuria, repeated and loading organic acid analysis were done at least 1 week period interval. SPSS was used for statistical analysis. Result: Thirty patients in infantile period (2 M-2 Y), 31 patients in childhood period (2 Y-12 Y), 5 patients after adolescent period (>12 Y) and 1 in neonatal period were diagnosed during the study period. The most frequent chief complaint was seizure followed by seizure with developmental delay and developmental delay only. Conclusion: Ketolytic defects were not so rare in Korea. Major clinical manifestations are seizure and developmental delay or mental retardation.

Cloning, Nucleotide Sequence and Expression of Gene Coding for Poly-3-hydroxybutyric Acid (PHB) Synthase of Rhodobacter sphaeroides 2.4.1

  • Kim, Ji-Hoe;Lee, Jeong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 1997
  • A gene, $phbC_{2.4.1}$ encoding poly-3-hydroxybutyric acid (PHB) synthase of Rhodobacter sphaeroides 2.4.1 was cloned by employing heterologous expression in Escherichia coli. R. sphaeroides chromosomal DNA partially digested with MboI was cloned in pUC19 followed by mobilization into E. coli harbouring $phbA,B_{AC}$ in pRK415, which code for ${\beta}$-ketothiolase and acetoacetyl CoA reductase of Alcaligenes eutrophus, respectively. Two E. coli clones carrying R. sphaeroides chromosomal fragment of $phbC_{2.4.1}$ in pUC19 were selected from ca. 10,000 colonies. The PHB-producing colonies had an opaque white appearance due to the intracellular accumulation of PHB. The structure of PHB produced by the recombinant E. coli as well as from R. sphaeroides 2.4.1 was confirmed by [$H^{+}$]-nuclear magnetic resonance (NMR) spectroscopy. Restriction analysis of the two pUC19 clones revealed that one insert DNA fragment is contained as a part of the other cloned fragment. An open reading frame of 601 amino acids of $phbC_{2.4.1}$ with approximate M.W. of 66 kDa was found from nucleotide sequence determination of the 2.8-kb SaiI-PstI restriction endonuclease fragment which had been narrowed down to support PHB synthesis through heterologous expression in the E. coli harbouring $phbA,B_{AC}$. The promoter (s) of the $phbC_{2.4.1}$ were localized within a 340-bp DNA region upstream of the $phbC_{2.4.1}$ start codon according to heterologous expression analysis.

  • PDF