• Title/Summary/Keyword: ${\beta}$-glucosidase

Search Result 520, Processing Time 0.033 seconds

Characteristics of Extracellular $\beta$-Glucosidase in Tricholoma matsutake (송이의 세포외 분비 $\beta$-Glucosidase 효소의 특성)

  • 민응기;한영환
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 2000
  • In order to determine the characteristics of $\beta$-glucosidase associated with cellulose degradation, the enzyme produced extracellularly by the mycelia of Tricholoma matsutake DGUM 26001 in culture broth was partially purified. The enzyme activity was maintained in the range of temperatures trom 55 to $70^{\circ}C$ and its optimum temperature was $65^{\circ}C$. The $\beta$-glucosidase enzyme showed relatively high activity in the range of pH 3.0-5.0 and its optimum pH was 4.0. Under the optimal conditions, the specific activity of $\beta$-glucosidase for salicin as a substrate was 18.7 unit/mg protein. After thermal treatment of the enzyme at $55^{\circ}C$ for 60 min, more than 90% of the enzyme activity was still sustained. Iron($Fe^{++}$) stimulated enzyme activity, whereas mercury($Hg^{++}$) and copper($Cu^{++}$) inhibited. Compared to salicin as a substrate, the relative activity for cellobiose was observed to be 48.6%. The apparent $K_m$ and $V_{max}$ of the enzyme with cellobiose were 0.12 mM and 0.02 umol/min, respectively.

  • PDF

Characteristics of ${\beta}$-Glucosidase Secreted by Trichoderma reesei KCTC 6952 (Trichoderma reesei KCTC 6952로부터 분비된 ${\beta}$-glucosidase의 특성)

  • Park, Sung-Hee;Oh, Min-Jung;Lee, Jeong-Rai;Kwon, Suk-Hyung;Choi, Young-Wook;Lee, Min-Won;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.504-507
    • /
    • 2005
  • Trichoderma reesei KCTC 6952 possesses cellulase system consisting of three enzymatic components necessary to synergistically hydrolyze crystalline cellulose, among which ${\beta}$-glucosidase effectively releases glucose from glycoside derivatives. ${\beta}$-Glucosidase of T. reesei KCTC 6952 grown in modified Mandels' medium showed maximum activity(1.33 unit/mL) 4 days after initiation of growth. Optimal reaction conditions of the enzyme were 50 mM sodium acetate (pH 5) at $70^{\circ}C$ for 10 min. Enzymatic activities stabilized below $50^{\circ}C$ at pH range of 4-5. Results show ${\beta}$-glucosidase exerted its catalytic activities at relatively high temperatures and broad pH range.

Studies on the Celluloytic Enzymes Produced by Stropharia rugosoannulata in Synthetic Medium (합성배지에서 Stropharia rugosoannulata가 생산하는 섬유소분해효소에 관한 연구)

  • Yoo, Kwan-Hee;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.94-99
    • /
    • 1999
  • For the purpose of utilizing cellulose resources by cellulolytic enzymes of Stropharia rugosoannulata, it's cultural conditions for the prodution of cellulolytic enzymes in synthetic media were investigated. The optimum pH for the production of Avicelase and ${\beta}-glucosidase$ was pH 5.0, while that of CMCase was pH 4.0. The optimum temperature for the production of Avicelase, CMCase and ${\beta}-glucosidase$ was $40^{\circ}C$. Among the carbon sources, xylose was good for the production of CMCase and ${\beta}-glucosidase$, but maltose was good for the production of Avicelase. The optimum concentration of the carbon sources for the production of CMCase, Avicelase and ${\beta}-glucosidase$ was 1.0, 0.8 and 1.1%, respectively. As inorganic nitrogen sources, $NH_4Cl$ was good for the production of all the three cellulolytic enzymes. The optimum concentration of $NH_4Cl$ for the production of CMCase was 0.3% while that of Avicelase and ${\beta}-glucosidase$ was 0.4%. As organic nitrogen sources, malt extract was good for the production of all the three cellulolytic enzymes. The optimum concentration of organic nitrogen for the production of ${\beta}-glucosidase$ was 1.3% while that of CMCase and Avicelase was 1.0%. As the mineral sources, $CoCl_2$ good for the was good for the production of all the three cellulolytic enzymes. The optimum concentration of $CoCl_2$ for the production of all the three enzymes was 0.35%.

  • PDF

Improvement of Insoluble $\beta$-Glucosidase Activity by Molecular Chaperonin GroEL/ES (Inclusion Body를 형성한 $\beta$-Glucosidase의 Chaperonin에 의한 활성 향상)

  • Kim, Jong-Deok;Sachiko Machida;Kiyoshi Hayashi;Ha, Sun-Deok;Gong, Jae-Yeol
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.429-433
    • /
    • 1999
  • $\beta$-Glucosidaes from Cellvibrio gilvus(CG) was successfully overproduced in soluble form in E. coli with the coexpression of GroEL/ES/. Without the GroEL/ES protein, the $\beta$-glucosidase overexpressed in E. coli constituted a huge amount(80%) of total cellular protein, but was localized in the insoluble fraction, and little activity was detected in the soluble fraction. Coexpression of the E. coli GroEL/ES had a drastic impact on the proper folding of the $\beta$-glucosidase; 20% of the overexpressed enzyme was recovered in the soluble fraction in active form. Similar effects of GroEL/ES were also observed on the overexpressed $\beta$-glucosidase from Agrobacterium tumefaciens(AT). And pET28(a)-RGRAR, partially deleted mutant lacking 5-amino acid residues at carboxy teminus also could be folded into an active form when expressed with the molecular chaperonin GroEL/ES, and its activity was higher than that of the without GroEL/ES system, In addition, the synergistic effect of GroEL/ES and the low induction temperature were important factors for solubilization of the inclusion body from overproduced $\beta$-glucosidases.

  • PDF

Cloning and Expression of $\beta$-l,4-Glucosidase Gene from Pseudomonas sp. in Escherichia coli and Bacillus subtilis (Pseudomonas sp. $\beta$-1,4-Glucosidase 유전자의 Esherichia coli와 Bacillus subtilis에의 Cloning 및 발현)

  • 김양우;전성식;김석재;정영철;성낙계
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.2
    • /
    • pp.113-118
    • /
    • 1993
  • Fro the purpose of producing glouse from cellobiose or oligo saccharide and obtaining genetic information of beta-1,4-glucosidase gene, alpha beta-1,4-glucosidase gene of Pseudomonas sp. LBC505, potent cellulase complex and xylanase producing strain, was cloned in Esherichia coli and Bacillus subtilis into pUC19 and pBD64, respectively. Recombinant plasmid pGL1 contained 1.2kb EcoRI fragment was isolated from transformants forming blue color around colony on LB agar plate containing 20 ng/ml of 5-bromo-4-chloro-3-indolyl-beta-D-glucopyranoside(X-glu) and ampicillin.

  • PDF

Development of a Microbial Consortium with High Cellulolytic Enzyme Production (섬유소 분해 효소의 고생산을 위한 복합균주 개발)

  • 오영아;김경철;유승수;김성준
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.381-387
    • /
    • 2002
  • A filamentous fungus, strain FB01 showing high $\beta$-glucosidase activity was isolated from a compost. This fungus was cocultured with Trichoderma viride to enhance the productivity of $\beta$-glucosidase by changing inoculation time of the fungus. The microbial consortium showed higher cellulolytic enzyme production than T. viride alone. The maximal enzyme production was obtained when the microbial consortium was cultured at 30$\^{C}$ and pH 6.0 for 10 days with the activities of CMCase, $\beta$-glucosidase, and avicelase of 2.0, 0.8, and 0.2 U/mL, respectively. These enzyme activities were 2, 4, and 2 times as high as those of CMCase, p-glucosidase, avicelase from T. viride, respectively, indicating that a synergistic interaction appeared between T. viride and strain FBOI . The serial subcultures with pH control increased $\beta$-glucosidase production about 3.2 times. Enzyme production using ricestraw as a carbon source showed that the activities of CMCase, $\beta$-glucosidase, and avicelase were 3.69, 0.76, 0.17 U/mL, respectively, and $\beta$-glucosidase activity was 1.5 times higher than that of T viride.

Purification and Characterization of $Ginsenoside-{\beta}-Glucosidase$

  • Yu Hongshan;Ma Xiaoqun;Guo Yong;Jin Fengxie
    • Journal of Ginseng Research
    • /
    • v.23 no.1 s.53
    • /
    • pp.50-54
    • /
    • 1999
  • In this paper, the saponin enzymatic hydrolysis of ginsenoside Rg3 was studied. The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain mainly hydrolyzed the ginsenoside Rg3 to Rh2, the enzyme from FFCDL-00 strain hydrolyzed Rg3 to the mixture of Rh2 and protopanaxadiol (aglycon). The $ginsenoside-{\beta}-glucosidase$ from FFCDL-48 strain was purified with a column of DEAE-Cellulose to one spot in the SDS polyacrylamide gel electrophoresis. During the purification, the enzyme specific acitvity was increased about 10 times. The purified $ginsenoside-{\beta}-glucosidase$ can hydrolyze the Rg3 to Rh2, but do not hydrolyze the $p-nitrophenyl-{\beta}-glucoside$ which is a substrate of original exocellulase such as ${\beta}-glucosidase$ of cellulose. The molecular weight of $ginsenoside-{\beta}-glucosidase$ was 34,000, the optimal temperature of enzyme reaction was $50^{\circ}C,$ and the optimal pH was 5.0.

  • PDF

Novel substrate specificity of a thermostable β-glucosidase from the hyperthermophilic archaeon, Thermococcus pacificus P-4 (초고온 고세균 Thermococcus pacificus P-4로부터 내열성 β-glucosidase의 새로운 기질 특이성)

  • Kim, Yun Jae;Lee, Jae Eun;Lee, Hyun Sook;Kwon, Kae Kyoung;Kang, Sung Gyun;Lee, Jung-Hyun
    • Korean Journal of Microbiology
    • /
    • v.51 no.1
    • /
    • pp.68-74
    • /
    • 2015
  • Based on the genomic analysis of Thermococcus pacificus P-4, we identified a putative GH1 ${\beta}$-glucosidase-encoding gene (Tpa-glu). The gene revealed a 1,464 bp encoding 487 amino acid residues, and the deduced amino acid residues exhibited 77% identity with Pyrococcus furiosus ${\beta}$-glucosidase (accession no. NP_577802). The gene was cloned and expressed in Escherichia coli system. The recombinant protein was purified by metal affinity chromatography and characterized. Tpa-Glu showed optimum activity at pH 7.5 and $75^{\circ}C$, and thermostability with a half life of 6 h at $90^{\circ}C$. Tpa-Glu exhibited hydrolyzing activity against various pNP-glycopyranosides, with kcat/Km values in the order of pNP-${\beta}$-glucopyranoside, pNP-${\beta}$-galactopyranoside, pNP-${\beta}$-mannopyranoside, and pNP-${\beta}$-xylopyranoside. In addition, the enzyme exhibited exo-hydrolyzing activity toward ${\beta}$-1,3-linked polysaccharide (laminarin) and ${\beta}$-1,3- and ${\beta}$-1,4-linked oligosaccharides. This is the first description of an enzyme from hyperthermophilic archaea that displays exo-hydrolyzing activity toward ${\beta}$-1,3-linked polysaccharides and could be applied in combination with ${\beta}$-1,3-endoglucanase for saccharification of laminarin.

Studies on the Enzymes Produced by Pleurotus sajor-caju(I) -The Production of Cellulolytic Enzymes- (Pleurotus sajo-caju가 생산(生産)하는 효소(酵素)에 관한 연구(硏究)(I) -섬유소(纖維素) 분해(分解) 효소(酵素)의 생산(生産)에 관하여-)

  • Hong, Jae-Sik;Uhm, Tai-Boong;Jung, Gi-Tae;Lee, Kang-Bae
    • The Korean Journal of Mycology
    • /
    • v.12 no.2
    • /
    • pp.59-64
    • /
    • 1984
  • The effects of cultural conditions in the rice straw media for cellulolytic enzymes production by Pleurotus sajor-caju were investigated. The optimum moisture content, pH and temperature for enzymes production were 60%, 7.0 and $35^{\circ}C$ in $C_1-cellulase$, and 60%, 5.0 and $25^{\circ}C$ in $C_x-cellulase$, and 60%, 7.0 and $20^{\circ}C$ in ${\beta}-glucosidase$, respectively. When light was irradiated during the cultivation period, $C_1-cellulase$ and ${\beta}-glucosidase$ production were decreased but $C_x-cellulase$ production increased at $500{\sim}1,000\;lux$. During the cultivation period, $C_1-cellulase$ production was contrary to $C_x-cellulase$ and ${\beta}-glucosidase$. Among the various materials added, rice bran was effective to $C_1-cellulase$ production, cotton seed cake and rice bran to $C_x-cellulase$ production, and defatted soybean and fish meal to ${\beta}-glucosidase$ production. The optimum concentration of rice bran for enzymes production were 20% in $C_{1-}$, $C_x-cellulase$ and 10% in ${\beta}-glucosidase$.

  • PDF

(${\beta}-glucosidase$의 고생산을 위한 복합균주 개발

  • O, Yeong-A;Kim, Gyeong-Cheol;Yu, Seung-Su;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.441-444
    • /
    • 2002
  • This study was targeted to develope a microbial consortium having high cellulase production. A filamentous fungus, strain FB01, isolated from a compost showed high ${\beta}-glucosidase$ activity especially. The strain FBOl was co-cultured with Trichoderma viride to enhance the productivity of ${\beta}-glucosidase$, changing inoculation time of one strain (FB01). The microbial consortium prepared showed the higher cellulytic enzyme production than T. viride well-known. The maximal enzyme production was obtained when the microbial consortium was cultured at $30^{\circ}C$ and pH 6.0 for 10days and the activities of CMCase, ${\beta}-glucosidase$, and avicelase were 2.0, 0.8, and 0.2 U/mL, respectively. These enzyme activities were 2, 4, and 2 times as high as those of CMCase, ${\beta}-glucosidase$, avicelase from T. viride, respectively, indicating that a synergistic interaction appeared between T viride and strain FB01. The serial subcultures by pH control increased ${\beta}-glucosidase$ production about 3.2 times. Also, enzyme production using rice-straw as a carbon source showed that the activities of CMCase, ${\beta}-glucosidase$, and avicelase were 3.69, 0.76, 0.17 U/mL, respectively, and ${\beta}-glucosidase$ activity was 1.5 times higher than that of T. viride. Consequently, microbial consortium showed the considerabely enhanced production of the cellullolytic enzymes, such as CMCase, ${\beta}-glucosidase$, and avicelase compared those of T. viride, and a favorable stability for the enzyme production even in the serial subcultures.

  • PDF