• 제목/요약/키워드: ${\beta}$-Ti alloy

검색결과 112건 처리시간 0.022초

Ti-6Al-4Fe 합금의 가공열처리 미세조직 분석 (Microstructural Analysis of Thermo-Mechanical Processed Ti-6Al-4Fe Alloy)

  • 최병학;최원열;심종헌;박찬희;강주희;김승언;현용택
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.410-416
    • /
    • 2015
  • Microstructural analysis of a (${\alpha}+{\beta}$) Ti alloy was investigated to consider phase transformation in each step of the thermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated with solid solution at $880^{\circ}C$, rolling at $880^{\circ}C$ and annealing at $800^{\circ}C$. In the STQ state, the TAF microstructure was composed of a normal hcp ${\alpha}$ and metastable ${\beta}$ phase. In a rolled state, it was composed of fine B2 precipitates in an ${\alpha}$ phase, which had high Fe segregation and a coherent relationship with the ${\beta}$ matrix. Finally, in the annealing state, the fine B2 precipitates had disappeared in the ${\alpha}$ phase and had gone to the boundary of the ${\alpha}$ and ${\beta}$ phase. On the other hand, in a lower rolling temperature of $704^{\circ}C$, the B2 precipitates were more coarse in both the ${\alpha}$ and the boundary of ${\alpha}$ and ${\beta}$ phase. We concluded that microstructural change affects the mechanical properties of formability including rolling defects and cracks.

β-type Ti-14Mo-3Nb-3Al-0.2Si 합금의 열처리 조건에 따른 기계적 특성 (Effect of Heat Treatment on the Mechanical Properties of a Ti-15Mo-3Nb-3Al-0.2Si Alloy)

  • 김태호;이준희;홍순익
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.121-127
    • /
    • 2011
  • The mechanical properties of the various heat treatment conditions on Ti-15Mo-3Nb-3Al-0.2Si alloy plates were examined. XRD patterns from the surface of Ti-15Mo-3Nb-3Al-0.2Si were analyzed as a solution-treated Ti alloy has the single-phase ${\beta}$ structure whereas the aged Ti alloys have the ${\beta}$ matrix embedded with ${\alpha}$ needles. High strength (~1500 MPa) with decent ductility (7%) was obtained by the Ti alloy double aged at $300^{\circ}C$ and $520^{\circ}C$ for 8 hours each. The double-aged alloy exhibits the finer structure than the single-aged alloy at $300^{\circ}C$ for 8 hours because of the higher nucleation rate of ${\alpha}$ needles at an initial low aging temperature ($320^{\circ}C$). TEM observation revealed that the fine nanostructure with ${\alpha}$ needles in the ${\beta}$ matrix ensured the excellent mechanical properties in the double aged Ti-15Mo-3Nb-3Al-0.2Si alloy. In the solution treated alloy, the yield drop, stress-serrations and the ductility minimum typically associated with dynamic strain aging can be attributed to the dynamic interaction between dislocations and oxygen atoms. The yield drop and the stress serration were not observed in aged samples because the geometrically introduced dislocations due to phase precipitates suppressed the dynamic strain aging.

치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직 (Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings)

  • 주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

Effect of Solution Treatment and Short Time Aging on Mechanical Properties of Cast Ti-6Al-4V Alloy

  • Oh, Seong-Tak;Woo, Kee-Do;Kwak, Seung-Mi;Kim, Jae-Hwang
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.287-291
    • /
    • 2016
  • The effect of heat treatment on the microstructure and mechanical properties of cast Ti-6%Al-4%V alloy was investigated. Heat treatment of cast Ti-6Al-4V alloy was conducted by solution treatment at $950^{\circ}C$ for 30 min; this was followed by water quenching and then aging at $550^{\circ}C$ for 1 to 1440 min. The highest hardness of the heat-treated specimens was obtained by solution treatment and subsequent aging for 5 min due to precipitates of fine ${\alpha}$ that formed from retained ${\beta}$ phase. The tensile strength of this alloy increased without dramatic decrease of the ductility due to microstructural refinement resulting from the decomposition of ${\alpha}^{\prime}$ martensite into fine ${\alpha}$ and ${\beta}$ phases, and also due to the fine ${\alpha}$ phase formed from the retained ${\beta}$ phase by aging treatment for 5 min. In addition, this strengthening might be caused by the transformation induced plasticity (TRIP) effect, which is a strain-induced martensite transformation from the retained ${\beta}$ phase during deformation, and which occurs even after aging treatment at $550^{\circ}C$ for 5 min.

Ti-40Nb계 합금에 열처리와 첨가원소 Ta, Hf이 기계적 성질에 미치는 영향 (Effects of Adding Element Ta, Hf and Heat Treatment on Mechanical Properties of Ti-40Nb Alloys)

  • 이명곤
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.19-25
    • /
    • 2005
  • Ti6Al4V alloy have been mainly used as implant materials. Ti-6Al-4V alloy instead of pure Ti is being widely used as biomaterials has some characteristics such as high fatigue strength, tensile strength. But it has been reported recently that vanadium component expresses cytotoxicity and carcinogenicity and aluminium component is related with dementia of Alzheimer type. In order to overcome their detrimental effects, $\beta$-phase stabilizer Nb was chosen in the present study, in addition Ta and Hf were added to Ti-40wt.%Nb alloy to improve its mechanical properties. This paper was described the influence of heat treatment of Ti-40Nb alloys with 2wt%Ta, 2wt%Hf on the mechanical properties. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at 1050$^{\circ}C$ for 24 hr. and then were aged after solution heat treat at $\alpha+\beta$ and $\beta$ regions. The mechanical properties of Ti alloys were analysed by hardness test, tensile test, elongation test and SEM test. The results can be summarized as follows: 1. The mechanical properties Ti-40wt.%Nb were improved when 2wt.% Ta and 2wt.%Hf were added. 2. The higher tensile strength value and elongation at solution heat treat was higher than solution heat treat and then were aged.

  • PDF

Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성 (Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn)

  • 이재원;이백희;이규환;김영도
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

Nanotube Morphology Change of Ti-6Al-4V Alloys by Heat Treatment

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.194-194
    • /
    • 2013
  • In order to investigate nanotube morphology change of Ti-6Al-4V alloys by heat treatments, the Ti-6Al-4V alloys were used in this study. In non-treated Ti-6Al-4V alloy case, nanotubes only exhibited at ${\alpha}$ phase region with dissolved V-oxide area of ${\beta}$ phase. However, in Ti-6Al-4V alloy at $800^{\circ}C$ WQ case, nanotubes exhibited at both ${\alpha}$ and ${\beta}$ phase region. Electrochemical corrosion studies showed that the nanotubular alloy at $800^{\circ}C$WQ possesses slightly higher corrosion resistance than non-treated nanotubular alloy.

  • PDF

티타늄 및 티나늄-팔라듐 합금의 수소처리에 관한 연구 (A Study on the Hydrogen treatment of It and Ti-pd Alloy)

  • 차성수
    • 대한치과기공학회지
    • /
    • 제15권1호
    • /
    • pp.5-25
    • /
    • 1993
  • Effects of hydrogenation on microstructure and mechanical properties of pure Ti and Ti-0.15Pd alloy have been studied by means of optical microscopy, differential scanning calorimeter(DSC), Xray diffraction and micro vicker's hardness test. Grain size of pure Ti and Ti-0.15Pd alloy decresed largely by hydrogenation finer than that of pure Ti and the grain size refinement was evedent in Ti-0.15Pd alloy than that in pure Ti. Ti-.015Pd alloy carried out solution treatment at 950$^{\circ}C$, the transformation of $\alpha$' martensite was occured. The amount of Hydrogen absorption in Ti-.015Pd alloy was higher than that in pure Ti. Decomposition of hydride in pure titanium and Ti-0.15Pd alloy increased largely by hydrogenation, and micro vicker's hardness of Ti-.015Pd alloy was largely than that of pure Ti by 30% after hydrogenation. The micro vicker's hardness of Ti-0.15Pd alloy after solution treatment and dehydrogenation were higher at $\beta$ phase ranger(950$^{\circ}C$) than that phase range(750$^{\circ}C$).

  • PDF

등축정 Ti-6Al-4V 합금의 $\alpha,\;\beta$ 구성상의 고온변형거동 규명 (High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V alloy with an equiaxed microstructure)

  • 이유환;염종택;박노광;이종수;김정한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2005
  • High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V was investigated within the framework of a self-consistent approach at various temperature ranges. To examine the flow behavior of u-phase, Ti-7.0Al-1.5V alloy was used, whose chemical composition is close to that of the $\alpha$ phase in Ti-6Al-4V at hot working temperatures. The flow stress of $\beta$ phase was predicted by using self-consistent approach. The flow stress of $\alpha$ phase was higher than that of $\beta$ phase above $750^{\circ}C$, while the $\beta$ phase revealed higher flow stress than a phase at $650^{\circ}C$. It was found that the relative strength and strain rate ratio between $\alpha\;and\;\beta$ phase significantly varied with temperature. From this approach, the mode for grain matrix deformation was proposed as a mixed type of both iso-stress and iso-strain rate modes.

  • PDF

용해 및 가공조건 변화가 Ti-10wt.%Ta-10wt.%Nb합금의 미세조직에 미치는 영향 (Effects of Melting and Rolling Condition of Ti-10wt.%Ta-10wt.%Nb Alloy on Microstructure Variation)

  • 이도재;이광민;김민기;이경구
    • 한국주조공학회지
    • /
    • 제22권3호
    • /
    • pp.114-120
    • /
    • 2002
  • A new titanium based alloy, Ti-10Ta-10Nb, has designed to examine the improved mechanical properties and biocompatibility. A specimen of titanium alloy was melted in a consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. The effect of hot rolling on microstructure was estimated after rolling at $400^{\circ}C$ and $800^{\circ}C$ respectively. Surface of melted alloy by consumable vacuum arc melting was consisted of rough surface and it was changed to sound surface by coating of $ZrO_2$ slurry on copper mold surface. The hardness of Ti-10Ta-10Nb alloy increased with the amount of${\alpha}+{\beta}$ phase. Ti-10Ta-10Nb alloy showed $Widmanst{\"{a}}ten$ structure by hot rolling at $800^{\circ}C$ and in the rolling ${\beta}-region$ was negligible effects on microstructure refining.