• Title/Summary/Keyword: ${\beta}$-Islets

Search Result 54, Processing Time 0.026 seconds

Effects of Saengjihwangeumja-gami on STZ-induced Diabetic Mice (생지황음자가미(生地黃飮子加味)가 Streptozotocin으로 유발된 당뇨생쥐에 미치는 영향(影響))

  • Kim, Hee-Chul;Choi, Chang-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.12-47
    • /
    • 2005
  • First, mice were dosed with 50mg/kg of streptozotocin(STZ) twice every 24 hours to cause high blood-sugar. Then, after three days, mice were injected with 100mg/kg of STZ again. Two different dosages of Saengjihwangeumja-gami were given to the experiment groups: SA group, 15mg/kg/day, and SB group, 90mg/kg/day, in order to determine the effects of Saengjihwangeumja-gami, which has been known to be good for DM(Diabetes Mellitus). By observing weight and blood-sugar level changes, blood tolerance, the numerical value of BUN(Blood Urea Nitrogen) and creatinine in blood, and through light-electronicmicroscopic and immunohistologic investigations of pancreas and kidneys, the following results were obtained: 1. The experiment groups showed a high suppressive effect of weight-loss. 2. The experiment groups' blood-sugar and blood tolerance showed an effective lowering of blood-sugar levels. 3. The experiment groups did not show any noticeable change in the numerical value of BUN and creatinine in blood compared with that of the control groups. 4. The experiment groups showed a higher Insulin positive reaction of pancreatic islets ${/beta}-cell$ than the control groups. 5. The experiment groups showed a higher immuno-reaction against IGF- II than the control groups. 6. Observation of apoptosis of the pancreatic islets showed that the cells of experiment groups were less injured compared with those of the control groups, and fewer apoptag-positive reaction cells were seen in experiment groups than in the control groups. 7. Uunder electron-microscopy, the insulin-containing granules in pancreatic islets ${/beta}-cells$ had increased more in the experiment groups than in the control groups. 8. Under light microscopy, the injury on the inner & outer membrane of the glomerulus and epithelial cells of capillaries and cells among vessels were fewer in the experiment groups than in the control groups. 9. More apoptag-positive reaction cells in the kidney were seen in the control groups than in the experiment groups. 10. PAS-positive reaction substances had increased more in the substrate among the vessels of a glomerulus belonging to the control group than those of the experiment group. 11. Uunder electron-microscopy, the nucleonic membrane, nucleoplasm and mitochondria of proximal and distal renal tubular were more injured in the control groups than in the experiment groups. In conclusion, strong evidence for the efficacy of Saengjihwangeumja-gami in lowering blood-sugar, and in recovery and generation of pancreatic tissues injured by DM was observed. Results suggest Saengjihwangeumja-gami is an effective treatment for DM. Further study of the principles of blood-sugar dropping effects of Saengjihwangeumja-gami are needed, as well as further study of recovery and regeneration of pancreatic tissues injured by DM.

  • PDF

Effect of Rehmanniae Radix and Pear Phenolic Compound on the STZ-Treated Mice for Induction of Diabetes (생지황(Rehmanniae Radix)과 배의 Phenolic Compound가 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향)

  • 김정상;나창수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • This study has been carried out to investigate effect of Rehmanniae Radix (RR) and pear phenolic compound (PC) on the hyperglycemic mice induced with streptozotocin (STZ). For this purpose, male mice were fed with a 0.2 mL RR extract (S group) and the pear PC (90 mg/kg/day) dissolved in a 0.2 mL RR extract (SPC group) while the control group received the same commercial diet for 6 weeks. The blood glucose contents were examined from tail vein blood once a week for 6 weeks. Samples of pancreas removed after the experimental period were processed for the immunohistochemical identification of $\beta$-cells. The levels of serum glucose were decreased significalntly (p<0.05) in the S and SPC groups compared with the control group. The BUN and creatinine levels were significantly (p<0.05) decreased in SPC group compared with the control group. Intraperitoneal glucose tolerance tests peformed at 24 hours before that period revealed that glucose tolerances in S and SPC group were ameliorated. Immunohistochemical analyses of the pancreases revealed that a lot of insulin- positive $\beta$-cells were contained in a Langerhas's islets of S and SPC groups compared with the control group, and the number of Langerhas's islets were significalntly increased in S (p<0.01) and SPC (p<0.05) groups. These results suggest that RR extract and pear PC could recover the damages induced by STZ in the hyperglycemic mice.

Effect of PRX-1 Downregulation in the Type 1 Diabetes Microenvironment

  • Yoo, Jong-Sun;Lee, Yun-Jung;Hyung, Kyeong Eun;Yoon, Joo Won;Lee, Ik Hee;Park, So-Young;Hwang, Kwang Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.463-468
    • /
    • 2012
  • Type 1 diabetes (T1D) is caused by dysregulation of the immune system in the pancreatic islets, which eventually leads to insulin-producing pancreatic ${\beta}$-cell death and destabilization of glucose homeostasis. One of the major characteristics of T1D pathogenesis is the production of inflammatory mediators by macrophages that result in destruction or damage of pancreatic ${\beta}$-cells. In this study the inflammatory microenvironment of T1D was simulated with RAW264.7 cells and MIN6 cells, acting as macrophages and pancreatic ${\beta}$-cells respectably. In this setting, peroxiredoxin-1, an anti-oxidant enzyme was knocked down to observe its functions in the pathogenesis of T1D. RAW264.7 cells were primed with lipopolysaccharide and co-cultured with MIN6 cells while PRX-1 was knocked down in one or both cell types. Our results suggest that hindrance of PRX-1 activity or the deficiency of this enzyme in inflammatory conditions negatively affects pancreatic ${\beta}$-cell survival. The observed decrease in viability of MIN6 cells seems to be caused by nitric oxide production. Additionally, it seems that PRX-1 affects previously reported protective activity of IL-6 in pancreatic ${\beta}$ cells as well. These results signify new, undiscovered roles for PRX-1 in inflammatory conditions and may contribute toward our understanding of autoimmunity.

Enhanced antidiabetic efficacy and safety of compound K/β-cyclodextrin inclusion complex in zebrafish

  • Nam, Youn Hee;Le, Hoa Thi;Rodriguez, Isabel;Kim, Eun Young;Kim, Keonwoo;Jeong, Seo Yule;Woo, Sang Ho;Lee, Yeong Ro;Castaneda, Rodrigo;Hong, Jineui;Ji, Min Gun;Kim, Ung-Jin;Hong, Bin Na;Kim, Tae Woo;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Background: 20(S)-Protopanaxadiol 20-O-D-glucopyranoside, also called compound K (CK), exerts antidiabetic effects that are mediated by insulin secretion through adenosine triphosphate (ATP)-sensitive potassium ($K_{ATP}$) channels in pancreatic ${\beta}$-cells. However, the antidiabetic effects of CK may be limited because of its low bioavailability. Methods: In this study, we aimed to enhance the antidiabetic activity and lower the toxicity of CK by including it with ${\beta}$-cyclodextrin (CD) (CD-CK), and to determine whether the CD-CK compound enhanced pancreatic islet recovery, compared to CK alone, in an alloxan-induced diabetic zebrafish model. Furthermore, we confirmed the toxicity of CD-CK relative to CK alone by morphological changes, mitochondrial damage, and TdT-UTP nick end labeling (TUNEL) assays, and determined the ratio between the toxic and therapeutic dose for both compounds to verify the relative safety of CK and CD-CK. Results: The CD-CK conjugate ($EC_{50}=2.158{\mu}M$) enhanced the recovery of pancreatic islets, compared to CK alone ($EC_{50}=7.221{\mu}M$), as assessed in alloxan-induced diabetic zebrafish larvae. In addition, CD-CK ($LC_{50} =20.68{\mu}M$) was less toxic than CK alone ($LC_{50}=14.24{\mu}M$). The therapeutic index of CK and CD-CK was 1.98 and 9.58, respectively. Conclusion: The CD-CK inclusion complex enhanced the recovery of damaged pancreatic islets in diabetic zebrafish. The CD-CK inclusion complex has potential as an effective antidiabetic efficacy with lower toxicity.

Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells

  • Ju, Sung Mi;Youn, Gi Soo;Cho, Yoon Shin;Choi, Soo Young;Park, Jinseu
    • BMB Reports
    • /
    • v.48 no.3
    • /
    • pp.172-177
    • /
    • 2015
  • Upregulation of pro-inflammatory mediators contributes to ${\beta}$-cell destruction and enhanced infiltration of immune cells into pancreatic islets during development of type 1 diabetes mellitus. In this study, we examined the regulatory effects and the mechanisms of action of celastrol against cytotoxicity and pro-inflammatory immune responses in the RINm5F rat pancreatic ${\beta}$-cell line stimulated with a combination of interleukin-1 beta, tumor necrosis factor-alpha, and interferon-${\gamma}$. Celastrol significantly restored cytokine-induced cell death and significantly inhibited cytokine-induced nitric oxide production. In addition, the protective effect of celastrol was correlated with a reduction in pro-inflammatory mediators, such as inducible nitric oxide synthase, cyclooxygenase-2, and CC chemokine ligand 2. Furthermore, celastrol significantly suppressed cytokine-induced signaling cascades leading to nuclear factor kappa B (NF-${\kappa}B$) activation, including $I{\kappa}B$-kinase (IKK) activation, $I{\kappa}B$ degradation, p65 phosphorylation, and p65 DNA binding activity. These results suggest that celastrol may exert its cytoprotective activity by suppressing cytokine-induced expression of pro-inflammatory mediators by inhibiting activation of NF-${\kappa}B$ in RINm5F cells.

Antidiabetic Effects of Mixed Extract from Dendropanax morbiferus, Broussonetia kazinoki, and Cudrania tricuspidata (황칠, 닥나무, 꾸지뽕 혼합 추출물의 항당뇨 효과)

  • Kim, Sol;Kim, Sang-Jun;Oh, Junseok;Hong, Jae-Heoi;Kim, Seon-Young
    • Herbal Formula Science
    • /
    • v.27 no.3
    • /
    • pp.223-236
    • /
    • 2019
  • Dengropanax morfiferus (D), Broussonitia kazinoki (B), and Cudriania tricuspidata (E), a widely cultivated species in South Korea, has been used as traditional medicine to treat numerous diseases. In this study, we evaluated the antidiabetic effects in a various signaling mechanisms using mixed extract and major component contents were analyzed by HPLC in the combined extracts from Dengropanax morfiferus, Broussonitia kazinoki, and Cudriania tricuspidata (DBCE). DBCE inhibited ${\alpha}$-glucosidase and ${\alpha}$-amylase activation and showed potent antioxidant effects, which are evaluated using DPPH, ABTS, and SOD assay. Cytokines, which are released by inflammatory cells in pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. DBCE showed the protective effects in RINm5F cells against cytokines-induced damage by suppressing inducible nitric oxide (NO) synthase and COX-2 expression and NO production. Insulin resistance is the primary characteristic of type 2 diabetes. Therefore, the regulatory effect of DBCE on glucose uptake and production are investigated in insulin-responsive human HepG2 cells. DBCE stimulated glucose uptake, prevented Glut2 and phosphor-IRS1 downregulation induced by high glucose (HG, 30 mM). Moreover, DBCE pretreatment diminished glucose levels, PEPCK and G6Pase overexpression provoked by HG. These findings suggest that DBCE might be used for diabetes treatment through alpha-glucosidase or alpha-amylase activity regulation, pancreatic beta cell protection, hepatic glucose sensitivity improvement. Cytokines, which are released by inflammatory cells' infiltrations around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus.

Anti-diabetic Agents from Medicinal Plants Inhibitory Activity of Schizonepeta tenuifolia Spikes on the Diabetogenesis by Streptozotocin in Mice

  • Kim, Chang-Jong;Lim, Jung-Sik;Cho, Seung-Kil
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.441-446
    • /
    • 1996
  • The Schizonepeta tenuifolia spikes (STS) have been used as a traditional folk medicine for antiinflammatory, analgesic, anti-pyretic and anti-spasmodic purpose in Korea. Phytosterols (mixture of campesterol 3.68%, stigmasterol 2.30% and ${\beta}$-sitosterol 94.02%) and hesperidin were isolated by chromatography from ether and n-BuOH fractions of STS respectively. These compounds significantly reduced the blood glucose level and lessened the loss of body weight and water consumption dose-dependently when administered at a i.p. doses of 10 and 20 mg/kg for 4 days after the i.v. injection of streptozotocin (I 80 mg/kg). In the morphologic study, these compounds showed protective activity on the pancreatic islets, especially .betha.-cells, from the degenerative changes by streptozotocin.

  • PDF

Effects of Soo Jeom San on the Functions of Heart and Digestive Organs (수점산(手拈散)이 심장(心臟)과 소화기(消化器)에 미치는 영향(影響))

  • Lee, Key-Sang;Mun, Byeong-Sun;Kim, Sah-Gil
    • The Journal of Internal Korean Medicine
    • /
    • v.11 no.2
    • /
    • pp.148-169
    • /
    • 1990
  • The Present experiment was designed to investigate the effects of Soo Jeom San on the function of heart and digestive organs. And thus it was analyzed the total acidity, recovery effect, and the other various enzyme activities such as ATPase, Creatine kinase, Aspartate transaminase, and Lactate dehydrogenase. The results were obtained as follows : 1. The Total acidity decreased after Soo JeomSan administration for 6 days, however the total acidity inoreased after the drug administration for 9 days, these phenomena demonstrate that Soo Jeom San acts as a dual factor. The mechanism of decreasing the total acidity was considered to the inhibition of ATPase activity used for HCI active transport from parietal cells. 2. Soo Jeom San recovered the islets of Langerhans which was disrupted by streptozotocin. The recovery mechanism was suggested that Soo Jeom San stimulates the ${\beta}-cell$ proliferation. 3. Soo Jeom San inhibited the enzyme activities such as Creatine kinase and Aspartate transaminase, however the drug activated Lactate dehydrogenase. According to the obtained results, Soo Jeom San may be used for curing gastric ulcer and myocardiac infarction.

  • PDF

A Study on the Glucose and Immunoreactive Insulin Response during Oral Glucose Tolerance Test in Patients with Chronic Liver Diseases (만성(慢性) 간(肝) 질환(疾患)에서 경구적(經口的) 당부하(糖負荷) 시험시(試驗時) 혈당(血糖) 및 혈장(血漿) 인슐린의 변동(變動)에 관(關)한 연구(硏究))

  • Choe, Kang-Won;Lee, Hong-Kyu;Koh, Chang-Soon;Lee, Mun-Ho
    • The Korean Journal of Nuclear Medicine
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1973
  • The blood glucose and plasma immunoreactive insulin(IRI) levels were measured glucose tolerance test in 7 healthy subjects and 6 patients with chronic liver diseases. The glucose tolerance was impaired in 5 of the 6 patients and normal in 1. Plasma IRI responses were markedly increased and delayed in all patients, suggesting insulin resistance. Patients with more glucose intolerance showed less increase in plasma IRI than the group with less intolerance. It is suggested that some insulin antagonists may decrease the peripheral insulin sensitivity and stimulate compensatory hyperactivity of pancreatic islets. If the compensatory hyperactivity is inadequate due to genetic predisposition to diabetes mellitus or exhaustion of ${\beta}$-cells of pancreatic islsts, the glucose intolerance and overt diabetes mellitus may ensue.

  • PDF

STRUCTURE, SYNTHESIS, AND BIOLOGICAL FUNCTION OF NATURAL PRODUCTS IN DEER ANTLER AND THEIR DERIVATIVES

  • Kim, So-Yeon;Jhon, Gil-Ja;Lee, Yoon-Jin;Cho, So-Hye;Han, So-Yeop
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.126-126
    • /
    • 1998
  • Studies on natural products are of great interest, due to the limits in development of synthesized medicine and its side effects. Deer antler is the most popular cure-all type drug among Asian folk medicines. In this study, we newly isolated the biologically active components from chloroform extract and 70% ethanol extract of deer antler, and analyzed their structures. First, the structure of monoacetyldiglyceride in deer antler was identified. To investigate the structure-activity relationship of monoacetyldiglycerides, we synthesized diverse substituted glycerides from glycerol, and confirmed their structures by spectroscopic methods. Among seven structurally-interesting compounds tested in this study, compound 1,2,3,5, and 6 showed activity toward [Ca$\^$2+/]$\_$i/ increase in fura-2 loaded rat pancreatic acinar cells. Second, 70% ethanol extract of deer antler stimulated insulin release from rat pancreatic islets. We found the most effective fraction was CN-Es-8 in 70% ethanol extract, and it increased intracellular Ca$\^$2+/ concentration in pancreatic ${\beta}$-cell.

  • PDF