• Title/Summary/Keyword: ${\beta}$-Ionone

Search Result 40, Processing Time 0.019 seconds

Evaluation of Gastric Motility Enhancement of the Extracts and Isolates from Traditional Medicinal Herbs (한약재 추출물 및 유래 화합물들의 위장관 운동 촉진 효능 연구)

  • Hong, Ji-Young;Chung, Hwa-Jin;Choi, Tae Jun;Pyee, Yuna;Lee, Je-Hyun;Lee, Dong-Ung;Choi, Jae Sue;Lee, Sang Kook
    • Korean Journal of Pharmacognosy
    • /
    • v.45 no.3
    • /
    • pp.187-193
    • /
    • 2014
  • To identify potential gastrointestinal prokinetic agents, water and 70% ethanol extracts and isolated compounds from 41 different traditional medicinal herbs were evaluated for the stimulation of gastrointestinal (GI) motility in vivo. Of the 41 water and 70% ethanol extracts, 12 extracts were found to enhance GI motility activity in mice by more than 10%. The 12 extracts are as follows: Atractylodes japonica (root), Crataegus pinnatifida (flower), Aucklandia lappa (root), Inula helenium (root), Cynanchum wilfordii (root), Chinese Liriope platyphylla (root), Codonopsis pilosula (root), Glehnia littoralis (root), Pinellia ternate (tuber), Agastache rugosa (aerial part), Angelica decursiva (whole plant), and Peucedanum praeruptorum (whole plant). In particular, the extracts from Atractylodes japonica (root), Cynanchum wilfordii (root) and Angelica decursiva (whole plant) have demonstrated the highest GI motility activity. In addition, 26 isolated compounds from the medicinal herbs were tested, and 8 isolated compounds were found to be active. They are ${\alpha}$-ionone, ${\beta}$-ionone, trans-caryophyllene, cedrol, methyl-3,5-di-O-E-caffeoyl-quinate, lobetyolin, oleoyllinoleoylolein and cis-jasmone. ${\beta}$-ionone from Aucklandia lappa (root) showed the most potent GI motility activity. The active traditional medicinal herbs and isolated compounds might be therapeutically advantageous in the treatment of GI motility disorders.

Norisoprenoids and Hepatoprotective Flavone Glycosides from the Aerial Parts of Beta vulgaris var. cicla

  • Kim, In-Kyum;Chin, Young-Won;Lim, Song-Won;Kim, Young-Choong;Kim, Jin-Woong
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.600-603
    • /
    • 2004
  • (+)-Dehydrovomifoliol (1). 3-hydroxy-5$\alpha$,6$\alpha$-epoxy-$\beta$-ionone (2), vitexin 7 -O-$\beta$-D-glucopyrano-side (3), and vitexin 2'-O-$\beta$-D-glucopyranoside (4) were isolated as new constituents from the aerial parts of Beta vulgaris var. cicla. Compounds 3 and 4 demonstrated hepatoprotective activity with values of 65.8 and 56.1%, respectively, in primary cultured rat hepatocytes with $CCl_4$-induced cell toxicity, compared to controls. This was comparable to that of silibinin (69.8%) which was used as a positive control.trol.

Screening and Characterization of Red Yeast Xanthophyllomyces dendrorhous Mutants

  • Kim, Jeong-Hwan;Kim, Chan-Wha;Chang, Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.570-575
    • /
    • 2004
  • Three different strains of carotenoid accumulating XantlwphyUomyces dendrorhous mutants, JH1, JH2, and JH3, were isolated by NTG (N-methyl-N'-nitro-N-nitrosoguanidine) mutagenesis, which might potentially be useful for animal feed as well as for studies on the regulation and biosynthesis of astaxanthin. Mutants were selected based on the capability of growth and carotenoid production on the YM agar plate containing chemical inhibitor, $\beta$-ionone. Astaxanthin-overproducing mutant JH1 produced 4.032 mg astaxanthinlg dry cell weight, and this value was about 15-folds higher than that of wild-type. $\beta$-Carotene-overproducing mutant JH2 produced 0.273 mg $\beta$-carotene/g dry cell weight, and this was 4-folds increase from that of wild-type. In contrast, JH3 was a white-colored mutant that was unable to produce carotenoid pigment.

Autoxidation of Cycloalkenes by the System “Molecular Oxygen-bis(acetylacetonato) Cobalt (II) Complex-butyraldehyde”

  • Fang, Zhao;Tang, Rui-Ren;Zhang, Rui-Rong;Huang, Ke-long
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2208-2212
    • /
    • 2009
  • Oxidation of cycloalkenes with $O_2$ promoted by heterogeneous bis(acetylacetonato) cobalt (II) complex catalyst which can be recycled has been performed under mild conditions. It was found that $\beta$-ionone, cyclohexene, 1-methylcyclohexene, and $\alpha$-ionone were efficiently oxidized with $O_2$ in the presence of Co (II) complex and butyraldehyde at $55\;{^{\circ}C}$. A simple treatment of the resulting products led to epoxides as predominant products and a small amounts of allylic oxides, the chemoselectivity for the former being 82.1 - 90.8% with a 70.6 - 98.6% substrate conversion. On the other hand, oxidation of 1-phenylcyclohexene, 1-cyclohex-1-enylethan-1-one, $\alpha$-pinene, and $\beta$-pinene gave allylic oxides as major products.

Volatile Compounds Formed by Thermal Degradation of Ascidian Tunic Carotenoids (우렁쉥이 껍질 카로테노이드의 가열분해로 생성되는 휘발성 화합물의 특성)

  • Ho, Chi-Tang;Choi, Byeong-Dae
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.519-524
    • /
    • 1997
  • As an investigation for utilization of ascidian tunic carotenoids as a food color additives, we attempted to collect the volatile thermal degradation compounds from ascidian tunic carotenoids. Oxygenate volatile compounds were extracted by simultaneous distillation and extraction/concentration apparatus and analyzed by gas chromatography and mass spectrometery. Total 63 compounds were identified and some of them were caused by thermal degradation. They included 1,3,5-trimethylbenzene, 3,5,5-trimethyl-3-cyclohexen-1-ol, 3,5,5-trimethyl-3-cyclohexen-1-one, 1,1,2,3-tetramethyl-2-cyclohexen-5-ol, 1,1,2,3-tetramethyl-2-cyclohexen-5-one, 2,3,4,4-tetramethyl-6-hydroxy-2-cyclohexene-1-one, 1,2,3,8-tetrahydro-3,3,6-trimethyl-1-naphtol, dihydroacetinidolide, ${\beta}-ionone$, 2-(1,1,5-trimethyl-3-hydroxy-5-cyclohexen-6-yl)-1-tolylethene, 2,6-dimethyl-8-(1,1,5-trimethyl-3-hydroxy-5-cyclohexen-6-yl)-1,3,5-octatriene-7-yne. Proposed mechanism of formation of some compounds as thermal degradation products of ascidian tunic carotenoids are provided.

  • PDF

Glycosidically Bound Volatile Components in Apricot (Prunus armeniaca var. ansu Max.) (살구에서 배당체의 형태로 존재하는 휘발성 성분)

  • Kim, Young-Hoi;Kim, Kun-Soo;Park, Joon-Young;Kim, Yong-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.549-554
    • /
    • 1990
  • Glycosidically bound fraction was separated from apricot by Amberlite XAD-2 adsorption and eluted with methanol. Aglycones were liberated from the bound fraction by enzymatic hydrolysis, acid hydrolysis or by means of simultaneous distillation-extraction at pH 3.0. A total of 40 components were identified in three bound volatile fractions. Besides linalool oxide, linalool. ${\alpha}-terpineol$, nerol, geraniol, benzyl alcohol and 2-phenylethyl alcohol, previously reported as glycosidically bound volatiles, the following components were identified for the first time as glycosidically bound volatiles in apricot: 2,6-dimethyl-3,7-octadiene-2,6-diol , 3.7-dimethyl-1,5-octadiene-3,7-diol, (E)- and (Z)-2.6-dimethyl-2,7-octadiene-1,6-diol, $3,4-didehydro-{\beta}-ionol,\;3-oxo-{\alpha}-ionol$, $3-hydroxy-7,8-dihydro-{\beta}-ionol,\;3-oxo-7,8-dihydro-{\alpha}-ionol ,\;3-hydroxy-{\beta}-ionone$, eugenol, 4-hydroxyethylphenyl acetate and 2,3-dihydrobenzofuran.

  • PDF

Comparison of Volatile Components in Fresh and Dried Red Peppers (Capsicum annuum L.)

  • Jun, Hae-Roung;Cho, In-Hee;Choi, Hyung-Kyoon;Kim, Young-Suk
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.392-398
    • /
    • 2005
  • Fresh, and sun- and oven-dried red peppers were analyzed for volatile components. Also, their odor-active compounds were determined using gas chromatography-olfactometry (GC-O). More diverse volatile components, such as aldehydes, ketones, acids, and esters, were found in dried samples than in fresh ones. They included hexanal, ethyl acetate, ${\alpha}$-ionone, and ${\beta}$-ionone. Some Strecker aldehydes, 2-methyl butanal and 3-methyl butanal, were found only in dried red peppers. More hydrocarbons of high volatility and terpene-type components, such as ${\gamma}$-terpinene and aromadendrene, were detected only in fresh red peppers. A considerable amount of naphthalene was formed during sun-drying, whereas 2-furancarboxaldehyde, 1-methyl-1H-pyrrole and benzeneethanol were detected only in oven-dried red peppers. Characteristic odor of fresh ones could be attributed to 3-penten-2-o1, 2-methyl-2-butenal, 2-methoxy phenol, 2-hydroxy-methyl-benzoate, and 2-phenoxy ethanol, whereas some odorants, including 2-pentyl furan, naphthalene, hexyl hexanoate, and ${\alpha}$-ionone, could be responsible for distinctive odor property of sun-dried red peppers. 2-Furancarboxaldehyde, benzeneethanol, 4-vinyl-2-methoxy phenol, and unknown played important roles in odor property of oven-dried red peppers.

Volatile Flavor Components In a Mixed Tea of Pueraria Radix and Green Tea (녹차와 갈근을 혼합한 차의 휘발성 향기성분)

  • Jeon, Ju-Yeon;Choi, Sung-Hee
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.350-355
    • /
    • 2010
  • This study was carried out in order to characterize the flavor of Pueraria radix-green tea. To make a new tea with good flavor and functional properties, Pueraria radix was mixed with green tea. Volatile flavor compounds of Pueraria radix-green tea were extracted by simultaneous distillations and extraction methods using a Likens and Nickerson's extraction apparatus. The concentrated extract was analyzed and identified by GC and GC-MS. Forty-nine compounds including $\beta$-selinene, $\beta$-caryophyllene, hexanal and nonanal were isolated and identified from Pueraria radix. Sixty-four compounds including nerolidol, linalool, linalool oxide and phenylethyl alcohol were isolated and identified from green tea. Eighty-two compounds including linalool, $\delta$-cadinene, limonene, $\beta$-caryophyllene and $\beta$-ionone were isolated and identified from Pueraria radix-green tea.

Volatile Flavor Components in Green Tea Blended with Parched Naked Barley (볶은 쌀보리를 혼합한 녹차의 휘발성 향기성분)

  • Choi, Sung-Hee
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.981-986
    • /
    • 2012
  • To produce a new tea with a good flavor and functional properties using green tea of low quality, naked barley and barley were selected to blend with the green tea. The simultaneous distillation extraction method (SDE) using Likens and Nickerson's extraction apparatus was used to extract the volatile flavor compounds from the samples. The concentrated flavor extracts were analyzed and identified by GC and GC-MS. The GC patterns of the flavor components in two parched barleys were very different. The main volatile flavor components in two of the samples were alkyl pyrazines. Compounds including 3-methylbutanal, 2-methylbutanal, dihydro-2-methyl-3(2H)-furanone, 2,5-dimethyl pyrazine, and 3-ethyl-2.5-dimethyl pyrazine were isolated from the naked barley. Compounds including thiophenes, thiazoles, sulfides, and pyrroles with burnt odor were isolated from the barley. The parched naked barley was better than barley for adding to green tea. The main aroma components of the green tea blended with the naked barley were hexanol, hexanal, trans-2-hexenal, ${\beta}$-ionone, ${\alpha}$-ionone, alkyl pyrazines, 3-methylbutanal, 2-methylbutanal, and furfural.

Studies on the Essential Oil of Korean Valerian Root (Valeriana fauriei var. dasycarpa Hara) (한국산 쥐오줌풀(Vaieriana fauriei var. dasycarpa Hara)의 정유성분에 관한 연구)

  • 김용태;박준영;김영회;김근수;장희진;권영주;이종철;최영현
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.66-78
    • /
    • 1992
  • The essential oil of Korean valerian root ( Valeriana fauriei roar. dasycarpa Hara) was isolated by simultaneous distillation Sl extraction. The oil content of fresh root was 0.7% (wb) and that of dried root was 2.1 5 (db) and sensory analysis of the oil indicated sweet-balsamic, woody and floral characteristic aroma notes. The oil was fractionated into one hydrocarbon fraction and three oxygenated hydrocarbon fractions by using silica gel column chromatograpy. Each fraction was analyzed by capillary GC and GC-MS. Out of 81 characterized compounds, the major compounds were a-pinene, camphene, $\beta$-pinene, bornyl acetate, borneol , bornyl iso-valerate and sesquiphellandrene and the characteristic floral and woody aroma of neutral fraction of Korean valerian root could be due to be the presence of oxygenated compounds such as borneol, bornyl acetate, bornyl iso-valerate, p-ionone ana $\beta$-ionone epoxide. Comparing the yield of Korean valerian root with those from other origins reported, oil content of Korean valerian root was higher than those of European and Indian origins.

  • PDF