• Title/Summary/Keyword: ${\beta}$-Cyclodextrin inclusion complex

Search Result 104, Processing Time 0.023 seconds

Complexation of Bile Acids with ${\beta}-Cyclodextrin$ (담즙산류과 베타-사이클로덱스트린간의 복합체 형성)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Choi, Song-Am
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.78-85
    • /
    • 1994
  • From phase solubility studies bile acids and bile salts were found to form stable inclusion complexes with ${\beta}-cyclodextrin$ in aqueous solution. Stability constant of bile acids were larger than that of bile salts. Phase solubility diagrams of most bile acids showed Higuchi's $A_I$ type but lithocholic acid showed $B_S$ type. Not only the solubility of bile acids but also that of ${\beta}-cyclodextrin$ increased, especially in cases of cholic acid and ursodeoxycholic acid. Solubility increase of bile acids from their ${\beta}-cyclodextrin$ inclusion complex followed the order : cholic acid>ursodeoxycholic acid>chenodeoxycholic acid>deoxycholic acid>lithocholic acid. It seems that solubility of inclusion complexes was directly related with the hydrophilicity of bile acids.

  • PDF

Encapsulation of Flavors by Molecular Inclusion Using $\beta$-Cyclodextrin: Comparison with Spray-drying Process Using Carbohydrate-based Wall Materials

  • Cho, Young-Hee;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.185-189
    • /
    • 2009
  • Microencapsulation of flavor was carried out by molecular inclusion process using $\beta$-cyclodextrin (${\beta}CD$). ${\beta}CD$-flavor complex was prepared at various flavor-to-${\beta}CD$ ratios (1:6-1:12) to determine the effect of ${\beta}CD$ concentration on the inclusion efficiency. Maximum total oil retention and minimal surface oil content were obtained at flavors to ${\beta}CD$ ratio of 1:10. The physical properties and controlled release pattern of flavors from ${\beta}CD$-flavor complex were measured and compared with spray-dried microcapsules prepared using carbohydrate wall system. ${\beta}CD$-flavor complex showed higher total oil retention and surface oil contents, smaller mean particle size, lower moisture uptake, and higher oxidation stability than spray-dried microcapsule. Oxidative stability of flavor was correlated with hygroscopicity of wall materials. The controlled release mechanism was highly affected by temperature and characteristics of wall materials.

Production Enhancement of Benzophenanthridine alkaloids in the Suspension Cultures of California poppy using Cyclodextrin (양귀비 세포 현탁배양계에서 Cyclodextrin을 이용한 Benzophenanthridine alkaloids의 생산성 증대)

  • 박세춘;조규헌
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.411-419
    • /
    • 1996
  • In this research, an extractive production system for alkaloids, where production and some degree of separation occur simultaneously, was developed in a way that the fast removal of alkaloid produced from the suspension cultures was done by capturing alkaloid with cyclodextrins. The alkaloid production was substantially enhanced up to 40 fold when the solid cultures of E. califonica cells treated with ${\beta}$-cyclodextrin compared to the control. The enhancement of alkaloid production was also observed in the suspension cultures. Interestingly, the production pattern seemed to change when the cultures were treated with ${\beta}$-cyclodextrin so that the major part of the alkaloids in the treated cultures was present in the medium, while the non-treated cultures produced the alkaloids intracellularly. ${\beta}$-cyclodextrin was the most effective one in terms of the alkaloid production among the cyclodextrilns(${\alpha}$-cylodextrin, ${\beta}$-cyclodextrin and ${\gamma}$-cyclodextrin) tested in the suspension cultures. ${\beta}$-cyclodextrin showed no adverse effect on the cell growth. The most effective concentration of ${\beta}$-cyclodextrin was observed around 1.5% (w/v) in the suspension cultures. The formation of the inclusion complex of the alkaloids with ${\beta}$-cyclodextrin in the suspension cultures was confirmed by detecting the shift of UV absorbance from 274 nm to 282 nm with a UV spectrophotometer.

  • PDF

Stabilization of Polyphenolic Antioxidants Using Inclusion Complexation with Cyclodextrin and Their Utilization as the Fresh-food Preservative (폴리페놀계 천연 항산화제의 cyclodextrin inclusion complexation을 통한 안정화와 식품 보존제로의 활용)

  • Kim, Tae-Kwon;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.266-271
    • /
    • 2003
  • Insoluble polyphenol antioxidants, quercetin and catechin, were stabilized through the complexation with cyclodextrin to increase heat and pH stabilities. Comparison of inclusion complex formabilities of quercetin and catechin with ${\alpha}-,\;{\beta}-$, and ${\gamma}-CDs$ revealed ${\beta}-CD$ to be the most suitable result. Optimal molar mixing ratio of ${\beta}-CD$ and quercetin or catechin for inclusion complex formation was found to be 1 : 1. Inclusion complexation was confirmed using differential scanning calorimetry. Solubility of ${\beta}-CD-antioxidant$ inclusion complexes increased compared with native antioxidants, Stability against temperature and pH of ${\beta}-CD-antioxidant$ inclusion complex analyzed revealed antioxidant activities of ${\beta}-CD-quercetin$ and catechin inclusion complexes have higher stabilization compare to raw quercetin and catechin. Peroxide value of linoleic acid dissolved in water decreased substantionally after using ${\beta}-CD-quercetin$ inclusion complex. ${\beta}-CD-antioxidant$ inclusion complex can be used effectively as a fresh-food preservative.

Solubility and In vivo Absorption Enhancement of Diclofenac Sodium by ${\beta}-Cyclodextrin$ Complexation (${\beta}$-시클로덱스트린과의 포접에의한 디플로페낙나트륨의 용해도 및 생체흡수율 증가)

  • Lee, Kyung-Tae;Kim, Jong-Hwan;Kim, Joo-Il;Kim, Seung-Jo;Seo, Hee-Kyoung;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.169-174
    • /
    • 1996
  • Inclusion complexes of diclofenac sodium with ${\beta}-cyclodextrin$ were prepared in aqueous solution, alkaline solution and solid phase. The interaction of diclofenac sodium with ${\beta}-cyclodextrin$ in pH 9.0 alkaline solution was evaluated by the solubility method and the instrumental analysis such as thermal analysis, infrared spectroscopy, X-ray diffractometry. The solubility of diclofenac sodium was increased linearly with the increase in the concentration of ${\beta}-cyclodextrin$up to 0.15 mol and showed that the aqueous solubility rate of diclofenac sodium was significantly increased by complex with ${\beta}-cyclodextrin$. The optimum composition of this complex was one molecule of ${\beta}-cyclodextrin$ included 1.59 molecular weight of diclofenac sodium as a guest molecule. The pharmacokinetic parameters of the diclofenac sodium and the complex with ${\beta}-cyclodextrin$ were studied in rats by oral route. $T_{max}$ between drug alone and inclusion complex showed significant difference to be 120 minute and 20 minute respectively. Both of $C_{max}$ and AUC of inclusion complex was about 40% higher than drug alone. It is estimated from the data in this study that complexation of diclofenac sodium with ${\beta}-cyclodextrin$ increased the absorption rate and improved the bioavalability of the diclofenac sodium by the formation of a water-soluble complexes.

  • PDF

Inclusion Complexation of Clonixin with Cyclodextrins (클로닉신과 시클로덱스트린과의 포접복합체 형성)

  • Park, Sun-Joo;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.4
    • /
    • pp.283-289
    • /
    • 1995
  • The aim of this study is to increase the solubility and dissolution rate of clonixin by inclusion complex formation. Inclusion complexes of clonixin, a non-steroidal antiinflammatory drug, with ${\beta]-cyclodextrin$ were $2-hydrolrypropyl-{\beta]-cyclodextrin$ were prepared by freeze drying method. Inclusion complex formation of clonixin with cyclodextrins was determined by UV, IR and DSC. The apparent stability constants were calculated from the phase solubility diagrams. Dissolution rate and solubility of clonixin in water markedly increased by the complex formation.

  • PDF

Comparison of Physicochemical Properties between Ursodeoxycholic Acid and Chenodeoxycholic Acid Inclusion Complexes with ${\beta}-Cyclodextrin$ (우르소데옥시콜린산 및 케노데옥시콜린산의 베타시클로덱스트린 포접복합체의 물리화학적 특성비교)

  • Lee, Seung-Yong;Chung, Youn-Bok;Han, Kun;Shin, Jae-Young
    • YAKHAK HOEJI
    • /
    • v.38 no.3
    • /
    • pp.300-310
    • /
    • 1994
  • Physicochemical properties for the inclusion complex of chenodeoxycholic acid(CDCA) and it's $7{\beta}-hydroxy$ epimer ursodeoxycholic acid(UDCA) with ${\beta}-cyclodextrin({\beta}-CyD)$ were studied. The formation of the complex in the solid state were confimed by polarized microscopy and differential scanning calorimetry(DSC). Proton nuclear magnetic resonance$(^1H-NMR)$spectroscopy showed that CDCA and UDCA form an inclusion complex with ${\beta}-CyD$ in aqueous solution. The 1 : 1 stoichiometry of the complex was dextermined by the continuous variation method. From DSC and $^1H-NMR$ studies, there were not any differences between CDCA and UDCA. Complex of CDCA and UDCA showed increase in solubility and dissolution compared with CDCA and UDCA alone, respectively. Solubility pattern of UDCA complex was pH independent but, CDCA complex was like that of CDCA. Dissolution rate increased markedly in case of UDCA complex compared with CDCA complex, especially in acidic pH value.

  • PDF

Pharmaceutical Studies on the Inclusion Complexes of Non-Steroidal Antiinflammatory Drugs with ${\beta}-Cyclodextrin$ (I) (비(非)Steroid 성소염약물(性消炎藥物)과 ${\beta}-Cyclodextrin$과의 Inclusion Complex에 관(關)한 약제학적(藥劑學的) 연구(硏究) (제1보)(第一報))

  • Han, Kun;Lee, Min-Hwa;Kim, Shin-Keun
    • Journal of Pharmaceutical Investigation
    • /
    • v.13 no.1
    • /
    • pp.10-22
    • /
    • 1983
  • The interactions of ${\alpha}-cyclodextrin({\alpha}-CyD)$ and ${\beta}-cyclodextrin({\beta}-CyD)$ with several non-steroidal antiinflammatory drugs were studied on the effects of ${\alpha}-$ and ${\beta}-CyD$ on the solubility of the drugs in aqueous medium. Indoprofen, niflumic acid, alclofenac, and naproxen were chosen as representatives of antiinflammatory drugs. The solubility of all drugs studied increased with the addition of ${\beta}-CyD$, while not with glucose or ${\alpha}-CyD$. The increase of the solubility with ${\beta}-CyD$ was considered due mainly to the formation of inclusion complexes between ${\beta}-CyD$ and drugs. From the solubility data, the apparent stability constants K of the complex could be calculated. Ultraviolet absorption and circular dichroism confirmed the inclusion of indoprofen, niflumic acid and naproxen with ${\beta}-CyD$ in the molar ratio of 1 : 1. Inclusion complexes in solid powder form were obtained by the freeze-drying method and the inclusion formation was confirmed again by infrared, diffential thermal analysis, and X-ray diffraction measurements.

  • PDF

Preparing Method and Physico-chemical Characteristics of $Terfenadine-{\beta}-Cyclodextrin$ Inclusion Compound (테르페나딘-${\beta}$-시클로덱스트린 포접화합물의 제조방법 및 물리화학적 특성)

  • Choi, Han-Gon;Ryu, Jei-Man;Yoon, Sung-June
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.3
    • /
    • pp.219-223
    • /
    • 1997
  • Terfenadine, antihistaminic drug, is poorly soluble in water. The purpose of this study is to investigate the possibility of using $terfenadine-{\beta}-cyclodextrin$ inclusion compound, instead of terfenadine, as the active substance of solid dosage form by improving the solubility, dissolution and anti-histaminic activity of terfenadine. The solubility and binding characteristics of $terfenadine-{\beta}-cyclodextrin$ complex in pH $1.2{\sim}6.8$ were investigated. Furthermore, the preparing method of $terfenadine-{\beta}-\;cyclodextrin$ inclusion compound was setting up and its physico-chemical characteristics such as DSC curve, solubility, dissolution and anti-histaminic activity were investigated. In conclusion, the solubility of terfenadine was increasing ${\beta}-cyclodextrin$ and with the decreasing pH. $Terfenadine-{\beta}-cyclodextrin$ inclusion compound, whose yield is almost 100%, was prepared by neutralization method. This inclusion compound was 200-times as soluble as terfenadine in pH 1.2-6.8. In addition, it had the faster dissolution and anti-histaminic activity than terfenadine. Therefore, it is used to the active substance of solid dosage form such as tablet and capsule in stead of terfenadine.

  • PDF

Phamaceutical Studies on the Drug (III) -Enhancement of Dissolution and Stability of Sulfamethoxazole by ${\beta}-Cyclodextrin$ Complexation- (약물의 약제학적 연구(제 3보) -${\beta}-$시클로덱스트린과의 복합체 형성에 의한 설파메톡사졸의 용출 및 안정성 향상-)

  • Lee, Hyeon-Jong;Kim, Soo-Uck;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.181-186
    • /
    • 1988
  • Inclusion complex of sulfamethoxazole with ${\beta}-cyclodextrin$ was prepared by freeze-drying method in molar ratios of 1:1, 1:1.25, 1:1.5 and 1:1.75, and the complex formation was identified by ultraviolet and infrared spectroscopies, powder X-ray diffractometry and differential scanning calorimetry. Dissolution rate and solid state stability of the complex were investigated in comparison with those of sulfamethoxazole powder and the physical mixture of sulfamethoxazole with ${\beta}-cyclodextrin$. As a result, the dissolution rate and the stability of solid complexes in various relative humidity conditions increased more remarkably than those of sulfamethoxazole powder and physical mixture. But the difference according to molar ratio of the complex was not recognized.

  • PDF