• Title/Summary/Keyword: ${\beta}$-Cyclodextrin

Search Result 390, Processing Time 0.03 seconds

Molecular Dynamics Simulation of Enantioselectivity in Metoprolol in complex

  • Jang, Seok-Young;Park, Kyung-Lae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.356.3-357
    • /
    • 2002
  • Metoprolol (MT) is one kinds of adrenergic beta-blockers. Its (S)-enantiomer is known to be more active than the (R). Recently. the x-ray structure of beta-blocker. (S)-propranolol (a-naphthyl analogue), complexed in a mould fungal cellulase. Cel7A. was reported and the (R)-form did not build any complex. And in our previous study the conformation and stability of MT in carboxymethylated beta-cyclodextrin (BCD) complex was determined by NMR. HPLC, UV and electrophoresis measurement. (omitted)

  • PDF

Purification and Characterization of Cyclodextrin Glucanotransferase from Paenibacillus sp. JK-12

  • Kang, Yong;Kim, Sung-Koo;Jun, Hong-Ki
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.310-316
    • /
    • 2002
  • Extracellular cyclodextrin glucanotransferase (CGTase) from Paenibacillus sp. JK-12 was purified through sev-eral purification steps consisting of ammonium sulfate precipitation and chromatographies on DEAE-sephadex A-50 and Mono QIM HR5/5. The purified CGTase exhibited a single band on SDS-PAGE and was estimated to be approximately 82 kDa. The isoelectric point of the enzyme was 7.2 as determined by isoelectric focusing. The CGTase from Paenibacillus sp. JK-12 had a transglucosylation activity at the C-2 position of L-ascorbic acid. The optimum pH and temperature for the CGTase activity were 8.0 and 5$0^{\circ}C$, respectively. The enzyme activity was stable from pH 6.0 to 9.() and at temperatures up to 55$^{\circ}C$ at pB 8.0, having 80% residual activity. The activity of the CGTase was strongly resistant to metals such as A $g^{+}$ and $Ba^{2+}$ but slightly inhibited by H $g^{+}$, N $i^{2+}$ and $Mg^{2+}$. The enzymeproduced $\alpha$ -cyclodextrin ($\alpha$-CD) and $\beta$-CD as the main products from starch, but not ${\gamma}$-CD.X>-CD.

Development of Cholesterol-reduced Mayonnaise with Crosslinked β-Cyclodextrin and Added Phytosterol (가교화 β-Cyclodextrin과 식물성 Sterol을 이용한 콜레스테롤 저하 마요네즈의 연구)

  • Jung, Tae-Hee;Ha, Hyun-Jee;Ahn, Joung-Jwa;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.28 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The objective of the present study was to develop cholesterol-reduced and phytosterol-supplemented mayonnaise using crosslinked $\beta$-cyclodextrin and examine its physicochemical and sensory attributes during 10 months of storage. The composition of cholesterol-reduced phytosterol-supplemented mayonnaise was similar to the control. The amount of cholesterol removed ranged from 90.67 to 92.47%. The TBA absorbance of the samples showed that the more phytosterol the sample contained, the lower the TBA absorbance value. The viscosity of cholesterol-reduced mayonnaise with 2.0% phytosterol decreased significantly during storage (p<0.05). The color changes of mayonnaise during storage showed a decrease in the L- and b-values, and an increase in the a-value. The experimental mayonnaise maintained emulsion stability, which was significantly lower in 2.0% phytosterol-supplemented mayonnaise. With regard to sensory attributes, most characteristics were similar to the control mayonnaise, however, the addition of phytosterol had a negative effect on stickiness and bitterness. These results indicate that the cholesterol-reduced and phytosterol-supplemented mayonnaise has decreased oxidation and maintains most of its physicochemical and sensory properties during storage.

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Leukotriene Synthesis in Response to A23187 Is Inhibited by Methyl-β-Cyclodextrin in RBL-2H3 Cells

  • You, Hye Jin;Seo, Ji-Min;Moon, Ji-Young;Han, Sung-Sik;Ko, Young-Gyu;Kim, Jae-Hong
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Leukotrienes (LTs) are produced by several biosynthetic enzymes including cytosolic phospholipase $A_2$ ($cPLA_2$), 5-lipoxygenase (5-LO), and 5-lipoxygenase activating protein (FLAP) in the perinuclear area. In the present study, we showed that pretreatment with methyl-${\beta}$-cyclodextrin (MβCD), a cholesterol-depleting agent, dramatically reduced the synthesis of LTs in response to A23187 in mast cells. A23187-induced LT synthesis was inhibited by pretreatment with M${\beta}$CD, and this effect was reversed when cholesterol was added. In an approach to identifying the $M{\beta}CD$-sensitive protein(s), we observed that FLAP co-localized with flotillin-1, a lipid raft marker protein, in the lipid raft-rich low-density region of sucrose gradients. In addition, electron microscopic analysis revealed that FLAP co-localized with flotillin-1. Together, these results suggest that FLAP is present in cholesterol-rich lipid raft-like domains and that its localization in these domains is critical for LT synthesis.

Functional expression and enzymatic characterization of cyclomaltodextrinase from Streptococcus pyogenes (Streptococcus pyogenes 유래 cyclomaltodextrinase 유전자의 발현 및 효소 특성)

  • Jang, Myoung-Uoon;Kang, Hye-Jeong;Jeong, Chang-Ku;Oh, Gyo Won;Lee, Eun-Hee;Son, Byung Sam;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.208-215
    • /
    • 2017
  • A cyclomaltodextrinase (SPCD) gene was cloned from Streptococcus pyogenes ATCC 700294. Its open reading frame consists of 567 amino acids (66.8 kDa), which shows less than 37% of amino acid sequence identity with the other CDase-family enzymes. The homo-dimeric SPCD with C-terminal six-histidines was expressed and purified from Escherichia coli. It showed the highest activity at pH 7.5 and $45^{\circ}C$, respectively. SPCD has the broad substrate specificities against ${\beta}$-cyclodextrin, starch, and maltotriose to produce mainly maltose, whereas it hydrolyzes pullulan to panose. It can also catalyze the hydrolysis of acarbose to glucose and acarviosine-glucose. Interestingly, it showed much higher activity on ${\beta}$-cyclodextrin and acarbose than that on starch, pullulan, or maltotriose, which makes SPCD distinguished from common CDase-family enzymes. Although SPCD has significantly high acarbose-hydrolyzing activity, it showed negligible transglycosylation activity.

우유의 콜레스테롤 제거를 위한 가교화 ${\beta}$-Cyclodextrin의 재활용에 관한 연구

  • Han, Eun-Mi;Kim, Song-Hui;Gwak, Hae-Su
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2005.10a
    • /
    • pp.271-275
    • /
    • 2005
  • 본 연구결과, ${\beta}$-CD의 재활용을 위해 adipic acid로 ${\beta}$-CD를 가교시킨 후, 우유의 콜레스테롤 제거 실험에 사용한 결과, 10회 재활용하는 동안 평균 89.90%의 콜레스테롤이 제거되었으며, 이에 따른 가교화 ${\beta}$-CD의 재활용률은 97.30%로 나타났다. 재활용에 따른 가교화 ${\beta}$-CD의 수율은 8회 재활용할 때까지 감소폭이 매우 적었으며, 가교화 ${\beta}$-CD의 구조 역시, 8회 재활용할때까지는 ${\beta}$-CD간의 가교결합이 유지되다가 이후부터는 대부분 powder ${\beta}$-CD 형태로 존재하는 것으로 관찰되었다. 재활용하는 동안 콜레스테롤 제거가 가능한 ${\beta}$-CD를 정량한 결과, 8회 재활용할 때까지 일정한 수치를 유지하는 것으로 나타났다. 위 실험 결과, adipic acid로 가교시킨 ${\beta}$-CD를 이용하여 우유의 콜레스테롤 제거 시, 여러 번 사용하여도 가교화 ${\beta}$-CD의 물리적 성질에 변화가 거의 없이 자체의 특성을 유지하는 것으로 보아, 이를 유가공 산업에 적용 시, 경제적인 효과가 매우 클 것이라고 사료된다.

  • PDF

Effect of 2-hydroxypropyl-$\beta$-cyclodextrin on Biodegradation of High-Molecular Weight Polycyclic Aromatic Hydrocarbons by Novosphingobium pentaromtivorans US6-1 (Novosphingobium pentaromtivorans US6-1에 의한 고분자 방향족 탄화수소 생분해과정에서 2-hydroxypropyl-$\beta$-cyclodextrin의 영향)

  • Kang Ji-Hyun;Kwon Kae Kyoung;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 2004
  • Cyclodextrin compounds including 2-hydroxypropyl-β-cyclodextrin(β-HPCD) though to be accelerate the biodegradation of PAHs molecule by increasing solubility of PAHs through detaining PAHs in their's cavity. However, only this mechanism is not sufficient to explain the enhancement of PAHs biodegradation by β-HPCD. To find out possible additional role of β-HPCD in the enhancement of PAHs biodegradation, biodegradation rates of pyrene and benzo[a]pyrene (B[a]P) by a PAHs degrading Novosphingobium pentaromtivorans US6-1 strain were compared between with and without addition of β-HPCD. Changes of bacterial biomass were also measured simultaneously. In addition catechol 1,2-dioxygenase activity was determined depending on pre-incubation conditions. As a result, β-HPCD accelerate the degradation rate of pyrene by strain US6-1 and especially the β-HPCD amendment was obligatory for the degradation of B[a]p. Bacterial biomass was responsible for β-HPCD, however, PAHs compounds such as pyrene and B[a]P did not contribute to the bacterial biomass. Catechol 1,2-dioxygenase specific activity of US6-l cells pre-cultured in MM2 medium containing l% β-HPCD was higher than that of cells pre-cultured in ZoBell medium. The former case also showed similar activity compared to that of cells serially starved in MM2 medium after grown in ZoBell medium. These results imply that the presence of β-HPCD accelerate the degradation of PAHs by increasing the bacterial biomass as well as by increasing the water solubility of PAHs.

  • PDF

Stabilization of Barley $\beta$-Amylase by Modification with $IO_4$-Oxidized Starch ($IO_4$-산화전분 변형에 의한 보리 $\beta$-Amylase의 안정성 증가)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.342-347
    • /
    • 2000
  • The stabilization of barley $\beta$-amylase(Biozyme ML, Amano) was attained by modification with periodate-oxidized soluble starch. The specific activities of modified enzyme at pH 9.7 and pH 8.0 were 42% and 92%, respectively, compared with that of native enzyme. The pH stability of modified enzyme was increased at pH 2~5 and 7~12 in the presence of $\alpha$-cyclodextrin( $\alpha$ -CD) compared wish that of native enzyme. Thermal stability of the modified enzyme was increased. After treatment at 6$0^{\circ}C$ for 10min. the activity remained 8% for the enzyme modified at pH 8.0 in the presence of $\alpha$-CD, 4.5% for the native enzyme. The native enzyme and modified enzyme showed two peak in HPLC. The molecular weight of the modified enzyme was slightly increased in HPLC analysis.

  • PDF

Characterization of the ${\beta}-Cyclodextrin$ Glucanotransferase Bacillus firmus var. alkalophilus and Its Expression in E. coli

  • Park, Tae-Hyung;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.811-819
    • /
    • 1999
  • The ${\beta}-CGTase$ gene of alkalophilic Bacillus firmus var. alkalophilus was cloned into E. coli using $pZErO^{TM}-2$ as a vector. The cloned gene encoded a total of 710 amino acid residues consisting of 674 amino acids of the matured protein and 36 amino acids of the signal peptide, including 20 amino acids from the lacZ gene in the vector. Although the cloned ${\beta}-CGTase$ gene did not contain the promoter and start codons, it was expressed by the lac promoter and lacZ start codon in the $pZErO^{TM}$ vector. A comparison was made with the amino acid sequence and ten other CGTases from Bacillus sp. Also, ten highly conserved regions, which are important amino acid residues in catalysis of CGTase, were identified. The lac promoter used for expression of the ${\beta}-CGTase$ gene was induced constitutively in recombinant E. coli even without IPTG possibly because of a lack of the lacI gene in both host and vector, repressing the lacZ gene in the lac operon. Its expression was catabolically repressed by glucose, however, its repression was reduced by soluble starch, mainly because of the extremely high increase of the cAMP level. ${\beta}-CGTase$ can be overproduced in the recombinant E. coli by maintaining intracellular cAMP levels mostly through the intermittent feeding of glucose during cultivation.

  • PDF