• Title/Summary/Keyword: ${\beta}$-Agonist

Search Result 177, Processing Time 0.03 seconds

EP2 Induces p38 Phosphorylation via the Activation of Src in HEK 293 Cells

  • Chun, Kyung-Soo;Shim, Minsub
    • Biomolecules & Therapeutics
    • /
    • v.23 no.6
    • /
    • pp.539-548
    • /
    • 2015
  • Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase, binds to four different prostaglandin $E_2$ receptors (EP1, EP2, EP3, and EP4) which are G-protein coupled transmembrane receptors (GPCRs). Although GPCRs including EP receptors have been shown to be associated with their specific G proteins, recent evidences suggest that GPCRs can regulate MAPK signaling via non-G protein coupled pathways including Src. EP2 is differentially expressed in various tissues and the expression of EP2 is induced by extracellular stimuli. We hypothesized that an increased level of EP2 expression may affect MAPK signaling. The overexpression of EP2 in HEK 293 cells resulted in significant increase in intracellular cAMP levels response to treatment with butaprost, a specific EP2 agonist, while overexpression of EP2 alone did not increase intracellular cAMP levels. However, EP2 overexpression in the absence of $PGE_2$ induced an increase in the level of p38 phosphorylation as well as the kinase activity of p38, suggesting that up-regulation of EP2 may promote p38 activation via non-G protein coupled pathway. Inhibition of Src completely blocked EP2-induced p38 phosphorylation and overexpression of Src increased the level of p38 phosphorylation, indicating that Src is upstream kinase for EP2-induced p38 phosphorylation. EP2 overexpression also increased the Src activity and EP2 protein was co-immunoprecipitated with Src. Furthermore, sequential co-immunoprecipitation studies showed that EP2, Src, and ${\beta}$-arrestin can form a complex. Our study found a novel pathway in which EP2 is associated with Src, regulating p38 pathway.

Substrate-Perfusion Studies on Coronary Circulation and Myocardial Energy Metabolism in Spontaneously Hypertensive Rat Hearts (발현성 고혈압쥐의 관상순환 기능과 심장근의 에너지 대사에 관한 생체외 에너지원의 관류 연구)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.115-126
    • /
    • 1995
  • The effects of energy-yielding substrates on coronary circulation, myocardial oxygen metabolism, and intramyocytic adenylates of perfused Wistar control rat(WC) and spontaneously hypertensive rat(SHR) hearts were examined under basal and $\beta$-adrenergic stimulation conditions. The perfusion medium (1.0mM Ca2+) contained 5mM glucose (+5U/l insulin) in combination with 5mM pyruvate, 5mM lacate, 5mM acetate, or 5mM octanoate as energy substrates. Hearts were perfused with each substrate buffer for 20min under basal conditions. Coronary functinal hyperemia was induced by infusing for 20min isoproterenol (ISO, 1uM), a $\beta$-receptor agonist. Cardiac adenylates, glycolytic intermediates, and coronary venous lactate were measured by using an enzymatic analysis technique. Under basal conditions, acetate and octanoate significantly increased coronary flow(CF) of WC in parallel with myocardial oxygen consumption. However, CF of SHR was partly attenuated by coronary vasoconstriction despite metabolic acidosis. In addition, pyruvate and lactate depressd ISO-induced coronary functional hyperemia in SHR. It should be noted that octanoate exhibited coronary dysfunction under ISO conditions. On the other hand, fat substrates depleted myocardial high energy phosphate pool and accumulated breakdown intermediates. In SHR with coronary vasoconstriction under basal conditions, and with depressed coronary functional hyperemia, high energy phosphates were greatly depleted. These results suggest that energy substrates in the myocardium and coronary smooth muscle alter remarkably coronary circulation, and that coronary circulatory function is associated with a reserve of high energy phosphates and a balance between breakdown and nono synthesis of energy phosphates. These findings could be explained by alterations in the cytosolic redox state manipulated by LDH and hence in the cytosolic phosphorylation potential, which might be involved in hypertension of SHR.

  • PDF

Metabolic Activation of Marijuana Constituents, Cannabinoids, in Relation to Their Toxicity for Human and Its Oxidation Mechanism

  • Ikuo, Yamamoto
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.194-199
    • /
    • 2002
  • Many oxidative metabolites of tetrahydrocannabinols (THCs), active components of marijuana, were pharmacologically active, and 11-hydroxy-THCs, 11-oxo-${\Delta}^8$-THC, 7-oxo-${\Delta}^8$-THC, 8$\beta$, 9$\beta$-epoxyhexahydrocannabinol (EHHC), 9$\alpha$, l0$\alpha$-EHHC and 3'-hydroxy-${\Delta}^9$-THC were more active than THC in pharmacological effects such as catalepsy, hypothermia and barbiturate synergism in mice. Cannabidiol (CBD), another major component, was biotransfomred to two novel metabolites, 6-hydroxymethyl-${\Delta}^9$-THC and 3-pentyl-6, 7, 7a, 8, 9, lla-hexahydro-I, 7-dihydroxy-7, 1O-dimethyldibenzo[b, d]oxepin (PHDO) through 8R, 9-epoxy-CBD and 85, 9-epoxy-CBD, respectively. Both metabolites exhibited some pharmacological effects comparable to d9 - THe. Cannabinol (CBN), the other major component, was mainly metabolized to ll-hydroxy-CBN by hepatic microsomes of animals including humans. The pharmacological effects of the metabolite were higher than those of CBN demonstrating that II-hydroxylation of CBN is metabolic activation pathway of the cannabinoid as is the case in THCs. Tolerance and reciprocal cross-tolerance developed to pharmacological effects d8 - THC and ll-hydroxy-d8-THC , and the magnitude of tolerance development produced by the metabolite was significantly higher than that by d8-THC. The results indicate that ll-hydroxy-d8-THC has an important role not only in the pharmacological effects but also its tolerance development of d8 - THe. THCs and their metabolites competed to the specific binding of CP-55, 940, an agonist of cannabinoid receptor, to synaptic membrane from bovine cerebral cortex. The Ki value of THCs and their metabolites were closely paralleled to their pharmacological effects in mice. A novel cytochrome P450 (cyp2c29) was purified and identified as a major enzyme responsible for the metabolic activation of d8-THC at the II-position in the mouse liver. cDNA of CYP2C29 was cloned from a mouse cDNA library and its sequence was determined. The oxidation mechanism of THC by cyp2c29 was proposed.

  • PDF

Eugenol Inhibits ATP-induced P2X Currents in Trigeminal Ganglion Neurons

  • Li, Hai Ying;Lee, Byung-Ky;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.6
    • /
    • pp.315-321
    • /
    • 2008
  • Eugenol is widely used in dentistry to relieve pain. We have recently demonstrated voltage-gated $Na^+$ and $Ca^{2+}$ channels as molecular targets for its analgesic effects, and hypothesized that eugenol acts on $P2X_3$, another pain receptor expressed in trigeminal ganglion (TG), and tested the effects of eugenol by whole-cell patch clamp and $Ca^{2+}$ imaging techniques. In the present study, we investigated whether eugenol would modulate 5'-triphosphate (ATP)-induced currents in rat TG neurons and $P2X_3$-expressing human embryonic kidney (HEK) 293 cells. ATP-induced currents in TG neurons exhibited electrophysiological properties similar to those in HEK293 cells, and both ATP- and $\alpha$, $\beta$-meATP-induced currents in TG neurons were effectively blocked by TNP-ATP, suggesting that $P2X_3$ mediates the majority of ATP-induced currents in TG neurons. Eugenol inhibited ATP-induced currents in both capsaicin-sensitive and capsaicin-insensitive TG neurons with similar extent, and most ATP-responsive neurons were IB4-positive. Eugenol inhibited not only $Ca^{2+}$ transients evoked by $\alpha$, $\beta$-meATP, the selective $P2X_3$ agonist, in capsaicin-insensitive TG neurons, but also ATP-induced currents in $P2X_3$-expressing HEK293 cells without co-expression of transient receptor potential vanilloid 1 (TRPV1). We suggest, therefore, that eugenol inhibits $P2X_3$ currents in a TRPV1-independent manner, which contributes to its analgesic effect.

cDNA Cloning and Expression of a Cytochrome P450 1A (CYP1A) from the Pale Chub, Zacco platypus

  • Jeon, Hyoung-Joo;Park, Young-Chul;Lee, Wan-Ok;Lee, Jong-Ha;Kim, Jin-Hyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.364-372
    • /
    • 2011
  • The pale chub (Zacco platypus) is generally found in Asian countries, such as Korea, Japan, and China. Nevertheless, very little information exists about the genes involved in the metabolism of xenobiotics in this species. This species is useful in monitoring the environmental impact on various pollutants in freshwater as a sentinel fish species. We cloned the full-length cDNA sequence of xenobiotic metabolizing cytochrome P450 1A (CYP1A) gene from Z. platypus and characterized it. Tissue distribution and timedependent induction of CYP1A were studied by real-time RT-PCR. Induction pattern of CYP1A was studied by exposing the fish to an arylhydrocarbon receptor agonist, ${\beta}$-naphthoflavone (BNF). The liver showed the highest level of expression in basal state as well as BNF- treated fish. However, appreciable levels of expression were also recorded in Gill and kidney and the least level of expression was observed in the eye. The results of the time-course study revealed an induction in the liver, brain, and gills after 6 h and 12 h in most of the tissues. This study provides an insight into the xenobiotics metabolizing system of Z. platypus and offers baseline information for further research related to biomarker, stress, and adaptive response of this ecologically important fish species in the freshwater environment.

Water soluble tomato concentrate regulates platelet function via the mitogen-activated protein kinase pathway

  • Jeong, Dahye;Irfan, Muhammad;Saba, Evelyn;Kim, Sung-Dae;Kim, Seung-Hyung;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.67-74
    • /
    • 2016
  • Tomato extract has been shown to exert antiplatelet activity in vitro and to change platelet function ex vivo, but with limitations. In this study, antiplatelet activity of water soluble tomato concentrate (Fruitflow I) and dry water soluble tomato concentrate (Fruitflow II) was investigated using rat platelets. Aggregation was induced by collagen and adenosine diphosphate and granule-secretion, $[Ca^{2+}]_i$, thromboxane B2, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels were examined. The activation of integrin ${\alpha}_{IIb}{\beta}_3$ and phosphorylation of signaling molecules, including mitogen-activated protein kinase (MAPK) and PI3K/Akt, were investigated by flow cytometry and immunoblotting, respectively. Prothrombin time (PT) and activated partial thromboplastin time (aPTT) were examined. Moreover, in vivo thrombus weight was tested by an arteriovenous shunt model. Fruitflow I and Fruitflow II significantly inhibited agonist induced platelet aggregation, adenosine triphosphate and serotonin release, $[Ca^{2+}]_i$, and thromboxane B2 concentration, while having no effect on cAMP and cGMP levels. Integrin ${\alpha}_{IIb}{\beta}_3$ activation was also significantly decreased. Moreover, both concentrates reduced phosphorylation of MAPK pathway factors such as ERK, JNK, P38, and PI3K/Akt. In vivo thrombus formation was also inhibited. Taken together, these concentrates have the potential for ethnomedicinal applications to prevent cardiovascular ailments and can be used as functional foods.

SM22α Is Required for Agonist-induced Regulation of Contractility: Evidence from SM22α Knockout Mice

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.175-181
    • /
    • 2007
  • The present study was undertaken to determine whether $SM22{\alpha}$ participates in the regulation of vascular smooth muscle contractility using $SM22{\alpha}$ knockout mice and, if so, to investigate the mechanisms involved. Aortic ring preparations were mounted and equilibrated in organ baths for 60 min before observing contractile responses to 50 mM KCl, and then exposed to contractile agents such as phenylephrine and phorbol ester. Measurement of isometric contractions using a computerized data acquisition system was combined with molecular or cellular experiments. Interestingly, the aortas from $SM22{\alpha}$-deficient mice ($SM22^{-/-LacZ}$) displayed an almost three-fold increase in the level of $SM22{\beta}$ protein compared to wild-type mice, but no change in the levels of caldesmon, actin, desmin or calponin. $Ca^{2+}$-independent contraction in response to phenylephrine or phorbol ester was significantly decreased in the $SM22{\alpha}$-deficient mice, whereas in the presence of $Ca^{2+}$ neither contraction nor subcellular translocation of myosin light chain kinase (MLCK) in response to phenylephrine or 50 mM KCl was significantly affected. A decrease in phosphorylation of extracellular signal regulated kinase (ERK) 1/2 was observed in the $SM22{\alpha}$-deficient mice and this may be related to the decreased vascular contractility. Taken together, this study provides evidence for a pivotal role of $SM22{\alpha}$ in the regulation of $Ca^{2+}$-independent vascular contractility.

Properties of Slow Inward Current in the Rabbit Sinoatrial Node (토끼 동방결절에서의 완만내향전류$(i_{si})$에 관한 연구)

  • Ahn, Kwang-Pil;Lee, Young-Kyun;Earm, Yung-E;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.20 no.2
    • /
    • pp.165-174
    • /
    • 1986
  • The voltage clamp studies were undertaken to elucidate the properties of the slow inward current, $i_{si}$, in the small preparations of the rabbit sinoatrial node. The slow inward current, $i_{si}$, which is known to be responsible for the late one-third of pacemaker potential and whole range of upstroke phase of action potential was analysed with the effects of isoprenaline, cobalt, ouabain and higenamine. The results obtained are as follows; 1) Voltage of SA node preparation was held at zero current level, usually-40mV and the slow inward current, $i_{si}$, was activated by depolarizing clamp pulses. Peak values of $i_{si}$, in steady state were at $-10{\pm}0mV$ in most preparations. 2) Isoprenaline, ${\beta}-agonist$ increased $i_{si}$ and no shift was noticed in voltage-dependency. 3) Cobalt ion in the concentration of 1 mM abolished is, in entire range of membrane potential and the difference of two current levels before and after $Co^{2+}$ treatment could be considered as pure $i_{si}$ magnitude. 4) In the therapeutic concentration of ouabain $(5{\times}10^{-8}M)$ slightly increased is, and reduced the time to reach the peak value. 5) Higenamine $(10^{-6}M)$ changed the configurations of action potential (i. e. rapid upstroke phase and notch in the spike) and increase spontaneous rate. It also increased is, and the effect of higenamine was blocked ${\beta}-blocker$, propranolol $(10^{-6}M)$.

  • PDF

Differential Coupling of G$\alpha$q Family of G-protein to Muscarinic $M_1$ Receptor and Neurokinin-2-Receptor

  • Lee, Chang-Ho;Shin, In-Chul;Kang, Ju-Seop;Koh, Hyun-Chul;Ha, Ji-Hee;Min, Chul-Ki
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.423-428
    • /
    • 1998
  • The ligand binding signals to a wide variety of seven transmembrane cell surface receptors are transduced into intracellular signals through heterotrimeric G-proteins. Recently, there have been reports which show diverse coupling patterns of ligand-activated receptors to the members of Gq family $\alpha$ subunits. In order to shed some light on these complex signal processing networks, interactions between G$\alpha$q family of G protein and neurokinin-2 receptor as well as muscarinic M$_{1}$ receptor, which are considered to be new thearpeutic targets in asthma, were studied. Using washed membranes from Cos-7 cells co-transfected with different G.alpha.q and receptor cDNAs, the receptors were stimulated with various concentrations of carbachol and neurokinin A and the agonist-dependent release of [$^3H$]inositol phosphates through phospholipase C beta-1 activation was measured. Differential coupling of Gaq family of G-protein to muscarinic M$_{1}$ receptor and neurokinin-2 receptor was observed. The neurokinin-2 receptor shows a ligand-mediated response in membranes co-transfected with G$\alpha$q, G$\alpha$11 and G$\alpha$14 but not G$\alpha$16 and the ability of the muscarinic $M_1$ receptor to activate phospholipase C through G$\alpha$/11 but not G$\alpha$14 and G$\alpha$16 was demonstrated. Clearly G$\alpha$/11 can couple $\M_1$ and neurokinin-2 receptor to activate phospholipase C. But, there are differences in the relative coupling of the G$\alpha$14 and G$\alpha$16 subunits to these receptors.

  • PDF

Analysis of Treatment Pattern in COPD Patients Using Health Insurance Claims Data: Focusing on Inhaled Medications (건강 보험 청구 자료를 이용한 COPD 환자에서 치료제 처방 변화 분석: 흡입제를 중심으로)

  • Lim, Hana;Park, Mihai
    • Korean Journal of Clinical Pharmacy
    • /
    • v.32 no.3
    • /
    • pp.155-165
    • /
    • 2022
  • Background: Chronic obstructive pulmonary disease (COPD) is not completely reversible and requires long-term management with appropriate treatment. This study aimed to analyze trends in treatment regimens and medication costs for COPD patients using a national claims database. Methods: We conducted this analysis using National Patient Sample data from the Health Insurance Review and Assessment Service covering the period from 2015 to 2018. We have constructed a dataset comprising COPD disease classification codes J43.x and J44.x (based on KCD-7 code, J43.0 was excluded) and compiled a list of drugs fitting current guidelines. To identify trends, we calculated frequency, ratio, and compound annual growth rate (CAGR) using the numbers of prescriptions and patients. Results: The number of COPD patients was 7,260 in 2018, slightly decreased from 2015. Most of these COPD patients were aged 60 or older and included a high proportion of males (72.2%; 2018). The number of patients prescribed inhaled medications increased gradually from 2015 to 2018 (9,227 (47.1%); 2015, 9,285 (51.5%); 2018), while the number of patients prescribed systemic beta-agonists and Xanthines has decreased since 2015 (CAGR -14.7; systemic beta-agonist, -5.8; Xanthines). The per capita cost of medication has increased by 0.4% (KRW 206,667; 2018, KRW 204,278; 2015) annually during the study period. Conclusion: This study showed that treatment with inhaled medications had continuously increased in accord with changing guidelines, but oral medications were still widely used. It is necessary to emphasize the importance of inhaled medications in treating COPD to reduce additional economic burden through appropriate medication use.