• Title/Summary/Keyword: ${\beta}$ plane

Search Result 129, Processing Time 0.03 seconds

Characterization of SiC nanowire Synthesized by Thermal CVD (열 화학기상증착법을 이용한 탄화규소 나노선의 합성 및 특성연구)

  • Jung, M.W.;Kim, M.K.;Song, W.;Jung, D.S.;Choi, W.C.;Park, C.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.4
    • /
    • pp.307-313
    • /
    • 2010
  • One-dimensional cubic phase silicon carbide nanowires (${\beta}$-SiC NWs) were efficiently synthesized by thermal chemical vapor deposition (TCVD) with mixtures containing Si powders and nickel chloride hexahydrate $(NiCl_2{\cdot}6H_2O)$ in an alumina boat with a carbon source of methane $(CH_4)$ gas. SEM images are shown that the growth temperature (T) of $1,300^{\circ}C$ is not enough to synthesize the SiC NWs owing to insufficient thermal energy for melting down a Si powder and decomposing the methane gas. However, the SiC NWs could be synthesized at T>$1,300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is T=$1,400^{\circ}C$. The synthesized SiC NWs have the diameter with an average range between 50~150 nm. Raman spectra clearly revealed that the synthesized SiC NWs are forming of a cubic phase (${\beta}$-SiC). Two distinct peaks at 795 and $970 cm^{-1}$ in Raman spectra of the synthesized SiC NWs at T=$1,400^{\circ}C$ represent the TO and LO mode of the bulk ${\beta}$-SiC, respectively. XRD spectra are also supported to the Raman spectra resulting in the strongest (111) peaks at $2{\Theta}=35.7^{\circ}$, which is the (111) plane peak position of 3C-SiC. Moreover, the gas flow rate of 300 sccm for methane is the optimal condition for synthesis of a large amount of ${\beta}$-SiC NW without producing the amorphous carbon structure shown at a high methane flow rate of 800 sccm. TEM images are shown two kinds of the synthesized ${\beta}$-SiC NWs structures. One is shown the defect-free ${\beta}$-SiC NWs with a (111) interplane distance of 0.25 nm, and the other is the stacking-faulted ${\beta}$-SiC NWs. Also, TEM images exhibited that two distinct SiC NWs are uniformly covered with $SiO_2$ layer with a thickness of less 2 nm.

Deposition of β-SiC by a LPCVD Method and the Effect of the Crystallographic Orientation on Mechanical Properties (저압 화학기상증착법을 이용한 β-SiC의 증착 및 결정 성장 방위에 따른 기계적 특성 변화)

  • Kim, Daejong;Lee, Jongmin;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.43-49
    • /
    • 2013
  • ${\beta}$-SiC was deposited onto a graphite substrate by a LPCVD method and the effect of the crystallographic orientation on mechanical properties of the deposited SiC was investigated. The deposition was performed at $1300^{\circ}C$ in a cylindrical hot-wall LPCVD system by varying the deposition pressure and total flow rate. The texture and crystallographic orientation of the SiC were evaluated by XRD. The deposition rate increased linearly with the gas flow rate from 800 sccm to 1600 sccm. It also increased with the pressure but became saturated above a total pressure of 3.3 kPa. In the range of 3.3 - 10 kPa, the preferred orientation changed from the (220) and (311) planes to the (111) plane. The hardness and elastic modulus showed maximum values when the SiC had the (111) preferred orientation, though it gradually decreased upon a change to the (220) and (311) preferred orientations.

Effect of Carbon Content on the Shape of WC Grains during Liquid Phase Sintering of WC-Co Hard Metals (WC-Co 초경합금의 액상소결시 WC 입자형상에 미치는 탄소량의 영향)

  • 한석희;박종구;허무영
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.307-313
    • /
    • 1999
  • The effect of carbon content on the shape of WC grains dispersed in the Co-rich matrix during liquid phase sintering of WC-35%Co hard metals has been determined. The shape of WC grains was observed using SEM stereography after removing cobalt matrix with boiling hydrochloric acid solution. The WC grains changed from hexagonal to trigonal prism as the carbon content increased in the two-phase region of(WC + $\beta$ - Co), while the morphology of WC grains changed from trigonal to hexagonal shape as the carbon content decreased. The morphology of WC grains changes reversibly along with carbon loss or carbon pick-up. Morphology change of WC grains is attributed to crystal structure of WC, which has an asymmetric array of carbon atoms. There are two types of prismatic planes having different numbers of broken W-C bonds in WC grains. It is scrutinized that as the carbon content increases, the high energy prism planes grow fast and the crystals change from hexagonal to trigonal shape. On the other hand, when the carbon content decreases, the high energy prism planes are dissolved accompanying split of (100) plane into (101) and (101) planes.

  • PDF

The Crystal Structure of Benzidine Dihydrochloride (Benzidine 鹽酸鹽의 結晶構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup;Shin, Hyun-So
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 1972
  • Benzidine dihydrochloride crystallizes in the triclinic system. The space group is $P_1$. The unit cell dimensions are; a = 4.38${\pm}$0.01, b = 5.76${\pm}$0.01, c = 12.82${\pm}$0.02${\AA}$, $\alpha$ = 101.5${\pm}$0.2, $\beta$ = 99.5${\pm}$0.2, $\gamma$ = 99.5${\pm}$0.2$^{\circ}$; with one molecule per unit cell. The crystal structure has been solved by two dimensional Patterson and by trial and error methods, and refined by means of two dimensional differential synthesis. The bond distances are C-C(*) = 1.40${\pm}$0.02, C-C = 1.52${\pm}$0.02, C-N = 1.51${\pm}$0.03 and N-H${\cdot}{\cdot}{\cdot}$Cl = 3.21${\pm}$0.03${\AA}$. The structure consists of hydrogen bonded molecular layers, extending to the (100) plane, and the hydrogen bonding scheme is similar to that of p-phenylenediamine dihydrochloride. The adhesion between hydrogen bonded molecular layers is due to van der Waals forces.

  • PDF

POLARIZATION OF $H_{\alpha}$ WINGS RAMAN-SCATTERED IN SYMBIOTIC STARS (공생별에서의 $H_{\alpha}$날개의 편광연구)

  • BAK JIH-YONG;LEE HEE-WON
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.147-151
    • /
    • 2000
  • Symbiotic stars, believed to be binary systems of a mass-losing giant and a white dwarf with an emission nebula, are known to exhibit very broad wings around Hex that extend to $\~10^3km\;s^{-1}$. The wing formation mechanism is not a settled matter and recently Lee (2000) proposed that Raman scattering of Ly$\beta$ by neutral hydrogen is responsible for the broad H$\alpha$ wings. In this model, it is predicted that. the Hex wings will be polarized depending on the geometric and kinematic distribution of the scatterers relative to the UV emission region. In this paper, we investigate the polarization of Hex wings in symbiotic stars. Noting that many symbiotic stars possess bipolar nebular morphology, we assume that the distribution of neutral scatterers follows the similar pattern with a receding velocity of several tens of km $s^{-1}$ that mimics the expansion of the neutral envelope of the nebula. It is found that the red wing is more strongly polarized than the blue and main part and that the polarization direction is along the equatorial plane. We obtain a typical degree of polarization $\~10$ percent, however, it varies depending on the detailed distribution of H I scatterers We conclude that spectropolarimetry will provide very important information on the origin of the Hex wings.

  • PDF

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Development of a Quadrilateral Enhanced Assumed Strain Element for Efficient and Accurate Thermal Stress Analysis (효과적인 열응력 해석을 위한 사각형 추가 변형률 요소의 개발)

  • Ko, Jin-Hwan;Lee, Byung-Chai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1205-1214
    • /
    • 1999
  • A new quadrilateral plane stress element is developed for efficient and accurate analysis of thermal stress problems. It is convenient to use the same mesh and the same shape functions for thermal analysis and stress analysis. But, because of the inconsistency between deformation related strain field and thermal strain field, oscillatory responses and considerable errors in stresses are resulted in. To avoid undesired oscillations, strain approximation is enhanced by supplementing several assumed strain terms based on the variational principle. Thermal deformation is incorporated into the generalized mixed variational principle for displacement, strain and stress fields, and basic equations for the modified enhanced assumed strain method are derived. For the stress approximation of bilinear elements, the $5{\beta}$ version of Pian and Sumihara is adopted. The numerical results for several problems show that the present element behaves well and reduces oscillatory responses. it also results in almost the same magnitude of error as compared with the quadratic element.

The Crystal Structure of Ethylenediamine Dihydrochloride $ClH{\cdot}H_2N{\cdot}CH_2{\cdot}CH_2{\cdot}NH_2{\cdot}HCl$ (Ethylenediamine 鹽酸鹽의 結晶構造)

  • Chung Hoe Koo;Moon Il Kim;Chung Soo Yoo
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.293-298
    • /
    • 1963
  • The crystal structure of ethylenediamine dihydrochloride has been determined by the two-dimensional Patterson methods and refined by two-dimensional Fourier syntheses. The unit cell dimensions are a = 4.44${\pm}$0.02, b = 6.88${\pm}$0.02, c = 9.97${\pm}$0.02 ${\AA}$, ${\beta}$ = 92${\pm}$$1^{\circ}$. The space group is $P2_1_{/c}$. The carbon and nitrogen atoms in the ethylenediamine itself lie on one plane and its structure has a trans-form with a centre of symmetry in it, and C-C distance of 1.54 ${\AA}$, C-N distance of 1.48${\AA}$ and C-C-N bond angle of $109.07^{\circ}$. The molecules are linked by N-H${\cdots}$Cl hydrogen bonds with distance of 3.14, 3.16 and 3.22 ${\AA}$ forming three dimensional network. The values of reliability factor for F(okl), F(hol) and F(hko) are 0.11, 0.10 and 0.09 respectively.

  • PDF

The Crystal and Molecular Structure of Sulfapyridine

  • Koo, Chung-Hoe;Lee, Young-Ja
    • Archives of Pharmacal Research
    • /
    • v.2 no.2
    • /
    • pp.99-110
    • /
    • 1979
  • The crystal structure of sulfapyridine, $C_{11}H_{11}N_{3}O_{2}S$, has been determined by X-ray diffraction method. The compound crystallizees in the monoclinic space group C2/c with a = 12, 80(4), b= 11.72(4), $c= 15.36(5){\AA}, {\beta}= 94(3)^{\circ}$and Z = 8. A total of 1133 observed reflections were collected by the Weissenberg method with CuKaradiation. Structure was solved by the heavy atom method and refined by isostropic block-diagonal least-squares method to the R value of 0.14. The nitrogen in the pyridine ring of sulfapyridine is associated with an extra-annular hydrogen. The C (benzene ring) S-N-C (pyridine ring) group adopts the gauche form with a fonformational angle of $71^{\circ}$. The benzene ring are inclined at angle of $84^{\circ}.to the pyridine ring plane. Sulfapyridine shows three different hydrogen bonding in the crystal. They are two N-H...O hydrogen bonds with the distance of 2.90 and 2.98${\AA}$ respectively, and on N-H...N with the distance of 3.06 ${\AA}$.

  • PDF

A Study On the Structure and Mechanical Properties of Polypropylene filament treated with Dry heat treatment at Different draw ratio (연신비를 달리한 Polypropylene filament의 건열처리에 따른 구조와 물성에 관한 연구)

  • Lee, Eun-Woo;Cho, In-Sul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.61-68
    • /
    • 1999
  • The variety of crystalline structure and mechanical properties of PP filament treated with dry heat treatment at different draw ratio has been studied. Crystalline structure and mechanical properties of annealed PP filament at different draw ratio has been examined by XRD, UTM, and density method. Heat treatment has been carried out $100^{\circ}C$, $120^{\circ}C$ $140^{\circ}C$ for 30min. in dry oven. From the results of this study, it found the following facts. It was found that the crystallinity and crystallite size of (110) plane of sample were increased with increasing of annealed temperature and draw ratio. The crystalline form of annealed sample which was undrawn showed ${\alpha}$, ${\beta}$ mixing form below $120^{\circ}C$ and showed ${\alpha}$ form at $140^{\circ}C$. But the crystalline form of annealed sample which was drawn showed ${\alpha}$ form at $120^{\circ}C$. Initial modulus and tensile strength were increased with increasing of annealing temperature, and the degree of orientation was decreased with decreasing of annealing temperature.

  • PDF