• Title/Summary/Keyword: ${\beta}$ cells

Search Result 4,152, Processing Time 0.034 seconds

Synergistic effect of ionizing radiation and $\beta$-lapachone against tumor in vitro and in vivo

  • Park, Eun-Kyung;Kim, Young-Seok;Lee, Sang-wook;Ahn, Seung-Do;Shin, Seong-Soo;Park, Heon-Joo;Song, Chang-Won
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.80-80
    • /
    • 2003
  • ${\beta}$-lapachone(${\beta}$-Lap), a natural o-naphthoquinone, presents in the bark of the Lapacho tree. ${\beta}$-Lap is cytotoxic against a variety of human cancer cells and it potentiates the anti-tumor effect of Taxol. In addition, ${\beta}$-Lap has been reported to radiosensitize cancer cells by inhibiting the repair of radiation-induced DNA damage.In the present study, we investigated the cytotoxicity of ${\beta}$-Lap against RKO human colorectal cancer cells as well as the combined effect of ${\beta}$-LaP and ionizing radiation. An incubation of RKO cells with 5 ${\mu}$M of ${\beta}$-Lap for 4 h killed almost 90% of the clonogenic cells. An incubation of RKO cells with 5 ${\mu}$M of ${\beta}$-Lap for 4 h or longer also caused massive apoptosis. Unlike other cytotoxic agents, ${\beta}$-Lap did not increase the expression of p53 and p21 and it suppressed the NFkB expression. The expression of Caspase 9 and 3 was minimally altered by ${\beta}$-Lap. Radiation and ${\beta}$-Lap acted synergistically in inducing clonogenic cell death and apoptosis in RKO cells when ${\beta}$-Lap treatment was applied after but not before the radiation exposure of the cells. Interestingly, a 4 h treatment with 5 ${\mu}$M of ${\beta}$-Lap starting 5 h after irradiation was as effective as that starting immediately after irradiation. The mechanisms of ${\beta}$-Lap-induced cell killing is controversial but a recent hypothesis is that ${\beta}$-Lap is activated by NAD(P)H: quinone-onidoreductase (NQO1) in the cells followed by an elevation of cytosolic Ca$\^$2+/ level and activation of proteases leading to apoptosis. It has been reported that NQO1 level in cells is markedly up-regulated for longer than 10 h after irradiation. Indeed, using immunological staining of NQO1, we observed a significant elevation of NQO1 expression in RKO cells 5h after 2-4 Gy irradiation. Such a prolonged elevation of NQO1 level after irradiation may be the reasons why the ${\beta}$-Lap treatment applied S h after irradiation was as effective as that applied immediately after irradiation in killing the cells. In view of the fact that the repair of radiation-induced damage is usually completed within 1-2 h after irradiation, it is highly likely that the ${\beta}$-Lap treahment applied 5 h after irradiation could not inhibit the repair of radiation-induced damage. For in vivo study, RKO cells were injected S.C. into the hind-leg of Nu/Nu mice, and allowed to grow to 130 mm3 tumor. The mice were i.p. injected with ${\beta}$-lapachone or saline 2 h after irradiation of tumors with 10 Gy of X-rays. The radiation induced growth delay was increased by 2.4 $\mu\textrm{g}$/g of ${\beta}$-lapachone. Taken together, we may conclude that the synergistic interaction of radiation and ${\beta}$-Lap in killing cancer cells is not due to radiosensitization by ${\beta}$-Lap but to an enhancement of ${\beta}$-Lap cytotoxicity by radiation through an upregulation of NQO1. The fact that NQO1 is elevated in tumors and that radiation causes prolonged increase of the NQO1 expression may be exploited to preferentially kill tumor cells using ${\beta}$-Lap in combination with radiotherapy.

  • PDF

IgA 항체합성에 대한 초유함유 TGF-${\beta}$ 와 bifidobacteria의 영향 평가

  • Kim, Pyeong-Hyeon;Go, Jun-Su
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2001.11a
    • /
    • pp.43-56
    • /
    • 2001
  • Colostrum contains various kinds of cytokines including TGF-${\beta}$ which is known to be multifunctional in immune response and act as an anti-inflammatory agent. First, we measured the amount of TGF-${\beta}$ in bovine and human colostrum. Expression pattern of TGF-${\beta}$ isotypes was dramatically different between human and bovine colostrial samples. Bovine colostrum collected on day 1 post-delivery retained $41.79{\pm}16.96ng/ml$ of TGF-${\beta}$ 1 and $108.4{\pm}78.65ng/ml$ of TGF-${\beta}$ 2 while in human, $284{\pm}124.75ng/ml$ of TGF-${\beta}$ 1 and $29.75{\pm}6.73ng/ml$ of TGF-${\beta}$ 2. Thus, TGF-${\beta}$ is the predominant TGF-${\beta}$ isotype in bovine colostrum and vice versa in human colostrum. Both TGF-${\beta}$ isotypes diminished significantly in human and bovine colostrum with time. Next, biological activity of colostrial samples was examined in vitro. Both human and bovine colostrum increased IgA synthesis by LPS-activated mouse spleen B cells, which is a typical effect of TGF-${\beta}$ on the mouse B cell differentiation. Futhermore, we found that anti-proliferative activity in MV1LU cells by colostrum samples disappeared by addition of anti-TGF-${\beta}$ 1 and anti-TGF-${\beta}$ 2 antibody. In conclusion, there are substantial amounts of biologically active TGF-${\beta}$ 1 and TGF-${\beta}$ 2 in bovine and human colostrum. The results that the colostrum can increase IgA expression has important implications since IgA is the major Ig class produced in the gastrointestinal tract. We have previously shown that the stimulatory effect of Bifidobacteria bifidum on spllen B cells was quite similar to that of LPS which is a well-known polyclonal activator for murine B cells. In the present study, we further asked whether B. bifidum regulate the synthesis of IgA by mucosal lymphoid cells present in Peyers patches (PP) and mesenteric lymph nodes (MLN). B. bifidum alone, but not C. perfringens, significantly induced overall IgA and IgM synthesis by both MLN and PP cells. This observation indicates that B. bifidum possesses a modulatory effect on the mucosal antibody production in vivo. We, therefore, investigated the mucosal antibody prodduction following peroral administration of B. bifidum to mice. Ingested B. bifidum significantly increased the numbers of Ig (IgM, IgG, and IgA) secreting cells in the culture of both MLN and spleen cells, indicating that peroally introduced B. bifidum enhances mucosal and systemic antibody response. Importantly, however, B. bifidum itself does not induce the own specific antibody responses, implying that B. bifidum do not incite any unwanted immune reaction. Subsequently, it was found that excapsulation of B. bifidum further augments the total IgA production by increasing the number of IgA-secreting cells in the culture of both MLN and spleen cells. Finally, we found that the immuno-stimulating activity of B. bifidum is due to its cell wall components but not due to any actively secreting component(s) from bacteria. Thus our data reveal that peroral administration of B. bifidum can enhance intestinal IgA production and that encapsulation of B. bifidum further reinforces the IgA production.

  • PDF

Differential Effect of Harmalol and Deprenyl on Dopamine-Induced Mitochondrial Membrane Permeability Change in PC12 Cells

  • Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 2004
  • Opening of the mitochondrial permeability transition pore has been recognized to be involved in cell death. The present study investigated the effect of ${\beta}$-carbolines (harmaline and harmalol) and deprenyl on the dopamine-induced change in the mitochondrial membrane permeability and cell death in differentiated PC12 cells. Cell death due to 250 4{\mu}$M dopamine was inhibited by caspase inhibitors (z-IETD.fmk, z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, ascorbate, superoxide dismutase, catalase and carboxy-PTIO). ${\beta}$-Carbolines prevented the dopamine-induced cell death in PCl2 cells, while deprenyl did not inhibit cell death. ${\beta}$-Carbolines decreased the condensation and fragmentation of nuclei caused by dopamine in PC12 cells. ${\beta}$-Carbolines inhibited the decrease in mitochondrial transmembrane potential, cytochrome c release, formation of reactive oxygen species and depletion of GSH caused by dopamine in PC12 cells, whereas deprenyl did not decrease dopamine-induced mitochondrial damage. ${\beta}$-Carbolines, deprenyl and antioxidants depressed the formation of nitric oxide and melanin in dopamine-treated PC12 cells. The results suggest that cell death due to dopamine PC12 cells is mediated by caspase-8, -9 and -3. Unlike deprenyl, ${\beta}$-carbolines may attenuate the dopamineinduced cell death in PC12 cells by suppressing change in the mitochondrial membrane permeability through inhibition of the toxic action of reactive oxygen and nitrogen species.

Immunohistochemical Identification of $\beta$-Endorphin in the Mouse Ovary (생쥐의 난소의 $\beta$-Endorphin에 대한 면역조직화학적 동정)

  • 조사선;이영기;김경진;윤용달;이정주;조완규
    • The Korean Journal of Zoology
    • /
    • v.33 no.2
    • /
    • pp.152-157
    • /
    • 1990
  • The present study, using immunohistochemical procedure, was carried out to determine the localization of immunostainable $\beta$-endorphin cells in the mouse ovarian tissues. Mature female mice were perfused with 4% neutral buffered paraformaldehyde under anesthesia and then frozen-sections were immunostained with anti $\beta$-endorphin antiserum according to ABC technique. Immunoreactive $\beta$-endorphin was found in the luteal cells of corpus lutea, but not in the thecal cells. More strong immunostaining signak were observed in large corpus luteum, in particular, the regressing luteal cells. Primary and secondary follicles did not show any immunoreactivity of $\beta$-endorphin, but granulosa cells lining the antral cavity of large antral follicles contained immunoreactive $\beta$-endorphin.

  • PDF

Effect of β-carotene on Cell Growth Inhibition of KB Human Oral Cancer Cells

  • Yang, Sung-Su;Kim, Su-Gwan;Park, Byung-Sun;Go, Dae-San;Yu, Sun-Kyoung;Kim, Chun Sung;Kim, Jeongsun;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.41 no.3
    • /
    • pp.105-111
    • /
    • 2016
  • ${\beta}-carotene$ is present in carrots, pumpkins, and sweet potatoes. It suppresses many types of cancers by regulating cellular proliferation and apoptosis through a variety of mechanisms. However, the effects of ${\beta}-carotene$ on oral cancer cells have not been clearly established. The main goal of this study was to investigate the effects of ${\beta}-carotene$ on cell growth and apoptosis in oral cancer cells. Our results demonstrate that treatment with ${\beta}-carotene$ induced inhibition of cell growth, and that the effect was dependent on ${\beta}-carotene$ treatment time and concentration in KB cells. Furthermore, treatment with ${\beta}-carotene$ induced nuclear condensation and fragmentation in KB cells. ${\beta}-carotene$ promoted proteolytic cleavage of procaspase-3, -7, -8 and -9 with associated increases in the concentration of cleaved caspase-3, -7, -8 and -9. In addition, the level of cleaved PARP was increased by ${\beta}-carotene$ treatment in KB cells. These results suggest that ${\beta}-carotene$ can suppress cell growth and induce apoptosis in KB human oral cancer cells, and that it may have potential usefulness in anti-cancer drug discovery efforts.

Prediabetic In vitro Model in Pancreatic Beta Cells Induced by Interleukin-$1{\beta}$ (췌장 베타세포에서 인터루킨-$1{\beta}$로 유도한 인슐린 의존형 당뇨병 실험 모델)

  • Lee, Ihn-Soon;Lee, In-Ja;Kim, Kyong-Tai
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.408-413
    • /
    • 1998
  • To establish prediabetes in vitro/ model concerning the etiology of Insulin Dependent Diabetes Mellitus (IDDM) in cellular level we have designed experimental prediabefic model in pancreatic beta cells. RINm5F, HIT-T15 and isolated rat islets were chosen as pancreatic beta cells. Since interleukin-$1{\beta}$-induced beta cell cytotoxicity has been implicated in the autoimmune cytotoxicity of IDDM, we used inteleukin-$1{\beta}$ as diabetogenic agent. For establishment of prediabetic in vitro model, the degree of beta cell deterioration was determined by cell proliferation, insulin release and morphological appearance. Cell proliferation, insulin release and morphology were changed dose-dependently in condition that inteleuldn-$1{\beta}$ was exposured to pancreatic beta cells. The concentration and exposure time of interleukin-$1{\beta}$ to set up prediabetic model in beta cell lines and isolated rat islets were 100${\sim}$1000U/ml, 48hr. And 25${\sim}$100U/ml, 48hr, respectively.

  • PDF

In vitro Immunomodulating Effects of PALMIWON (팔미원의 in vitro 면역조절 작용)

  • Lee, Ihn-Soon;Rhee, In-Ja
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.684-689
    • /
    • 1996
  • PALMIWON is composed of 8 oriental herbs which has been known to show some pharmacological effects in kidney, blood vessels and immune systems, and used for the treatment of kid ney disease, hypertension, nervous disease and diabetic mellitus in the Orient for a long time. Based on our previous report that PALMIWON showed different effects on immune cells and ${\beta}$-cells, the immunoreactivity of ICSA (Islet Cell Surface Antibody) with ${\beta}$-cell (RINm5F) and the cell proliferation and function of interleukin-1${\beta}$ damaged ${\beta}$-cells in the presence of PALMIWON were examined. It was observed that PALMIWON significantly inhibited the immunoreactivity of ICSA with ${\beta}$-cell, and markedly increased cell proliferation and insulin release of interleukin-1${\beta}$ damaged ${\beta}$-cells.

  • PDF

Relationship between estradiol-17β and IGF-I receptor expression in primary cultured rabbit renal proximal tubule cells (초대배양한 신장 근위세뇨관세포에서 estradiol-17β와 IGF-I 수용체 발현과의 상관관계)

  • Han, Ho-jae;Nam, Seong-ahn;Park, Kwon-moo
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.311-319
    • /
    • 1997
  • The mechanisms of $estradiol-17{\beta}$ regulating growth of both normal and neoplastic cells are not clear until now. In studies using various estrogen-dependent breast cell lines, it is recently known that estrogen controls the cell growth by regulating the expression of growth factors and/or their receptors. In the present study, we investigated the effects of $estradiol-17{\beta}$on cell growth and IGF-I binding sites using primary cultured renal proximal tubule cells. We have obtained results as follows : $Estradiol-17{\beta}(10^{-9})$ has stimulatory effects in cell growth. Cotreatment of $estradiol-17{\beta}(10^{-9}M)$ and $IGF-I(5{\times}10^{-8}M)$ significantly increased the growth of primary rabbit renal proximal tubule cells compared to that of $estradiol-17{\beta}$ or IGF-I alone treated cells. In binding studies, we found that the binding of $^{125}IGF-I$ on cell membranes was incubation time- and temperature-dependent. Incubation at $37^{\circ}C$ results in higher binding of $^{125}IGF-I$ than that of $23^{\circ}C$ or $4^{\circ}C$. Maximum binding was observed at $37^{\circ}C$ between 30 and 60 minutes. The binding of $^{125}IGF-I$ to both control and $estradiol-17{\beta}-treated$ cells was inhibited by unlabelled $IGF-I(10^{-8}{\sim}10^{-12}M)$ in a concentration-dependent manner. However, EGF did not compete for $^{125}IGF-I$ binding at $10^{-8}{\sim}10^{-12}M$. IGF-I binding to the membranes from both control and $estradiol-17{\beta}-treated$ cells was also analyzed. We found that $estradiol-17{\beta}-treated$ cells exhibited higher binding activity for IGF-I. When $estradiol-17{\beta}$ or tamoxifen alone, or $estradiol-17{\beta}$ and tamoxifen cotreated cells were compared, the binding ratio of $^{125}I-IGF-I$ of $estradiol-17{\beta}-treated$ cell was significantly increased but was similar to control in both $estradiol-17{\beta}$ and tamoxifen cotreated cell. These results suggest that $estradiol-17{\beta}$ in part controls cell proliferation by regulating the expression of IGF-I receptors in primary rabbit renal proximal tubule cells.

  • PDF

Non-Fibrillar $\beta$-Amyloid Exerts Toxic Effect on Neuronal Cells

  • Kim, Hyeon-Jin;Hong, Seong-Tshool
    • Animal cells and systems
    • /
    • v.5 no.2
    • /
    • pp.139-143
    • /
    • 2001
  • Alzheimer's disease is the most common form of dementia and no cure is known so far. Extensive genetic works and in vitro experiments combined with clinical observations link amyloid $\beta$--protein (A$\beta$-) to the pathogenesis of Alzheimer's disease (AD). It was hypothesized that $A\beta$- becomes toxic when it adopts a fibrillar conformation. Recently, non-fibrillar form of $A\beta$- was observed and the potential role in the pathogenesis of AD became an interesting subject. In this study, the cytotoxicity of non-fibrillar $A\beta$- and fibrillar $A\beta$- was compared on oxidative stress, membrane damage, or nucleosome break down. Non-fibrillar $A\beta$- was not toxic in peripheral nervous system-derived cells but significantly toxic in central nervous system-derived cells while fibrillar $A\beta$- was non-selectively toxic in both cell culture. The neurotoxicity of non-fibrillar $A\beta$- was reproduced in semi-in vivo culture of mouse brain slice. In conclusion, non-fibrillar $A\beta$- could be more relevant to the selective neurodegeneration in Alzheimer's brains than fibrillar $A\beta$- and further research needs to be done for identification of the cause of AD.

  • PDF

Anticancer Activity of Taxillus yadoriki Parasitic to Neolitsea sericea against Non-Small Cell Lung Carcinoma

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.93-93
    • /
    • 2019
  • In this study, we evaluated the anti-cancer activity and potential molecular mechanism of 70% ethanol extracts of branches from Taxillus yadoriki parasitic to Neolitsea sericea (TN-NS-B) against human lung cancer cells, A549. TY-NS-B dose-dependently suppressed the growth of A549 cells. TY-NS-B decreased ${\beta}$-catenin protein level, but not mRNA level in A549 cells. The downregulation of ${\beta}$-catenin protein level by TY-NS-B was attenuated in the presence of MG132. Although TY-NS-B phosphorylated ${\beta}$-catenin protein, the inhibition of $GSK3{\beta}$ by LiCl did not blocked the reduction of ${\beta}$-catenin by TY-NS-B. In addition, TY-NS-B decreased ${\beta}$-catenin protein in A549 cells transfected with Flag-tagged wild type ${\beta}$-catenin or Flag-tagged S33/S37/T41 mutant ${\beta}$-catenin construct. Our results suggested that TN-NS-B may downregulate ${\beta}$-catenin protein level independent on GSK3${\beta}$-induced ${\beta}$-catenin phosphorylation. Based on these findings, TY-NS-B may be a potential candidate for the development of chemopreventive or therapeutic agents for human lung cancer.

  • PDF