• 제목/요약/키워드: ${\ast}$-semigroup

검색결과 2건 처리시간 0.015초

NON-FINITELY BASED FINITE INVOLUTION SEMIGROUPS WITH FINITELY BASED SEMIGROUP REDUCTS

  • Lee, Edmond W.H.
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.53-62
    • /
    • 2019
  • Recently, an infinite class of finitely based finite involution semigroups with non-finitely based semigroup reducts have been found. In contrast, only one example of the opposite type-non-finitely based finite involution semigroups with finitely based semigroup reducts-has so far been published. In the present article, a sufficient condition is established under which an involution semigroup is non-finitely based. This result is then applied to exhibit several examples of the desired opposite type.

THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES

  • Kim, Hee-Sik;Neggers, Joseph
    • 대한수학회보
    • /
    • 제45권4호
    • /
    • pp.651-661
    • /
    • 2008
  • Given binary operations "*" and "$\circ$" on a set X, define a product binary operation "$\Box$" as follows: $x{\Box}y\;:=\;(x\;{\ast}\;y)\;{\circ}\;(y\;{\ast}\;x)$. This in turn yields a binary operation on Bin(X), the set of groupoids defined on X turning it into a semigroup (Bin(X), $\Box$)with identity (x * y = x) the left zero semigroup and an analog of negative one in the right zero semigroup (x * y = y). The composition $\Box$ is a generalization of the composition of functions, modelled here as leftoids (x * y = f(x)), permitting one to study the dynamics of binary systems as well as a variety of other perspectives also of interest.