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THE SEMIGROUPS OF BINARY SYSTEMS AND
SOME PERSPECTIVES

Hee Sik Kim and Joseph Neggers

Abstract. Given binary operations “∗” and “◦” on a set X, define a
product binary operation “2” as follows: x2y := (x ∗ y) ◦ (y ∗ x). This in
turn yields a binary operation on Bin(X), the set of groupoids defined on

X turning it into a semigroup (Bin(X), 2)with identity (x∗y = x) the left
zero semigroup and an analog of negative one in the right zero semigroup
(x ∗ y = y). The composition 2 is a generalization of the composition of

functions, modelled here as leftoids (x∗y = f(x)), permitting one to study
the dynamics of binary systems as well as a variety of other perspectives
also of interest.

§ 0. In what follows we associate with a set X a semigroup (Bin(X),
2)which generalizes in a rather natural way the composition of functions f :
X → X. Classes of groupoids defined on a set X may form semigroups or even
ideals and the axioms defining these classes may be analyzed according to the
properties of these classes in (Bin(X), 2)for the set X. The fact that some sets
of axioms produce subsemigroups of (Bin(X), 2)for the set X, whereas other
sets do not, appears to be an interesting and possibly important distinction
for the class under discussion. Some classes which appear to be new are also
pointed out, including the linear groupoids over rings with identity, usually
taken to be commutative. The strong bounded d-algebras are shown to be an
interesting class described as a convenient intersection of three other classes
each determined by one of the axioms. Given the standard “equivalence” these
algebras will (indirectly) satisfy several MV -axioms. Other properties such as
separability are looked at as well.

§ 1. Given a set X and a function f : X → X consider a groupoid (X, ∗, f)
where the multiplication is given by the formula

(1) x ∗ y = f(x).

If f(x) = idX(x) = x, then (X, ∗, idX) has a multiplication

(2) x ∗ y = x
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and the groupoid is referred to as the left zero semigroup. In keeping with this
terminology we shall refer to groupoids of the type (X, ∗, f) as leftoids.

Consider leftoids (X, ∗, f) and (X, ◦, g). Define an operation “2” on these
leftoids as follows:

(3) (X, ∗, f)2 (X, ◦, g) = (X, 2),

where

(4) x 2 y = (x ∗ y) ◦ (y ∗ x).

Thus it follows that x2 y = f(x) ◦ f(y) = gf(x), i.e., (X, 2) is the leftoid
(X, 2, f ◦ g), i.e., the multiplication as in (4) corresponds to the composition
of functions from X to X. Since composition of functions is an associative
operation, we obtain the following:

Theorem 1. The collection of leftoids with respect to the operation 2 is a
semigroup with identity (X, ∗, idX).

§ 2. Suppose now that for a given set X we consider Bin(X), the collection
of all binary systems (groupoids, algebras) defined on X. Given arbitrary
groupoids (X, ∗) and (X, ◦), define a product (X, 2) = (X, ∗)2 (X, ◦) precisely
as in formula (4). Then we have the following:

Theorem 2. (Bin(X), 2)is a semigroup, i.e., the operation 2 as defined in
general is associative. Furthermore, the left zero semigroup is an identity for
this operation.

Proof. If ((X, ∗)2 (X, ◦))2 (X, O) = (X,△), then a typical product is

x△y = ((x ∗ y) ◦ (y ∗ x))O ((y ∗ x) ◦ (x ∗ y)).

Similarly, (X, ∗) 2 ((X, ◦) 2 (X, O) has a typical element (x∗y) ∼ (y∗x), where
a ∼ b = (a ◦ b)O(b ◦ a), i.e., it is ((x ∗ y) ◦ (y ∗ x))O ((y ∗ x) ◦ (x ∗ y)) = x△y
and the associativity follows.

Also (X, ∗) 2 (X; ◦, idX) = (X, O), where xOy = (x ∗ y) ◦ (y ∗ x) = x ∗ y
and (X; ◦, idX) 2 (X, ∗) has a typical element (x ∗ y) ◦ (y ∗ x) = x ∗ y. Hence
(X, O) = (X, ∗) in either case. ¤

§ 3. Suppose that in Bin(X) we consider all those groupoids (X, ∗) with
the orientation property: x ∗ y ∈ {x, y} for all x and y. Thus, x ∗ x = x as a
consequence. If (X, ∗) and (X, ◦) both have the orientation property, then for
x2 y = (x∗y)◦(y∗x) we have the possibilities: x∗x = x, y∗y = y, x∗y ∈ {x, y}
and y ∗ x ∈ {x, y}, so that x 2 y ∈ {x, y}. It follows that if OP (X) denotes
this collection of groupoids, then (OP (X), 2) is a subsemigroup of (Bin(X),
2). The left zero semigroup has x ∗ y = x ∈ {x, y}, i.e., it is an element of
OP (X). We summarize:

Proposition 3. (OP (X), 2) is a semigroup with identity.
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A different interpretation of OP (X) is the following: For (X, ∗) ∈ OP (X), if
x ̸= y and x∗y = y draw an arrow from x to y, and if x∗y = x do not draw such
an arrow. The resulting picture is a digraph (without loops at the vertices)
and conversely any such digraph generates a groupoid (X, ∗) in OP (X).

From our observation above we have defined an associative product of di-
graphs with vertex set X.

In a sequence of papers Nebeský [6, 7, 8] has sought to associate with graphs
(V,E) groupoids (V, ∗) with various properties and conversely. Although not
identical in outlook there is some similarity. In particular, Nebeský defines a
travel groupoid (X, ∗) as a groupoid satisfying the axioms: (u ∗ v) ∗ u = u and
(u ∗ v) ∗ v = u implies u = v. If one adds these two laws to the orientation
property, then (X, ∗) is an OP-travel-groupoid. In this case u ∗ v = v implies
v ∗ u = u, i.e., uv ∈ E implies vu ∈ E, i.e., the digraph (X,E) is an (simple)
graph if uu ̸∈ E, with u ∗ u = u. Also, if u ̸= v, then u ∗ v = u implies
(u ∗ v) ∗ v = u ∗ v = u is impossible, whence u ∗ v = v and uv ∈ E, so that
(X,E) is a complete (simple) graph. On the other hand if (X,E) is a complete
(simple) graph, then u ̸= v implies uv ∈ E and u ∗ v = v, whence (X, ∗) is the
right zero semigroup in any case. Given that (u∗v)∗v = v as a consequence, it
follows that (u ∗ v) ∗ v = u implies u = v and (X, ∗) is an OP-travel-groupoid.

§ 4. Let (R, +, ·, 0, 1) be a commutative ring with identity and let L(R)
denote the collection of groupoids (R, ∗) such that for all x, y ∈ R

(5) x ∗ y = ax + by + c,

where a, b, c ∈ R are fixed constants. We shall consider such groupoids to be
linear groupoids. Notice that a = 1, b = c = 0 yields x ∗ y = 1 · x = x, and thus
the left zero semigroup on R is a linear groupoid.

Now, suppose that (R, ∗) and (R, ◦) are linear groupoids where x ∗ y =
ax + by + c and x ◦ y = dx + ey + f . Then x2 y = d(ax + by + c) + e(ay + bx =
c) + f = (da + eb)x + (db + ea)y + (d + e)c + f , whence (R,2) = (R, ∗)2(R, ◦)
is also a linear groupoid. We summarize:

Proposition 4. (L(R), 2) is a semigroup with identity.

Many common operations are of the linear type. Thus a = b = 1, c = 0
yields x ∗ y = x + y. Also a = 1, b = −1, c = 0 yields x ∗ y = x − y. In this
case x2y = (x + y) − (y + x) = 0 and x2y = (x − y) + (y − x) = 0 produces a
different view of what we mean by the statement: “plus and minus are inverse
operations”. The linear groupoids over the real numbers R form a very large
class of groupoids with many different types among them.

§ 5. Given a groupoid (X, ∗) we define the orbit Ω(X, ∗) to consist of
groupoids (X, ∗(n)), where (X, ∗(1)) = (X, ∗) and (X, ∗(n + 1)) = (X, ∗(n)) 2

(X, ∗(1)). Since (Bin(X), 2)is a semigroup it follows that if i + j = k, then
(X, ∗(i))2(X, ∗(j)) = (X, ∗(k)) as well.
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It follows immediately that (Ω(X, ∗), 2) is the principal semigroup generated
by the algebra (X, ∗) and that the fact that it is a semigroup allows one to
discuss the orbital dynamics in much the same way that one does for iterated
function systems for example. In terms of the physical importance of this fact,
one should note that it may well be the case that in complicated situations
it may not be the best way to describe systems via functions or operators
but through groupoids/algebras instead. To our knowledge this is the first
observation noting that it is possible.

To construct the basin of attraction BA(X, ∗) we proceed as follows:

(1) BA1(X, ∗) = Ω(X, ∗);
(2) If BAn(X, ∗) has been defined and if Ω(X, ◦) ∩ BAn(X, ∗) ̸= ∅, then

(X, ◦) ∈ BAn+1(X, ∗);
(3) Since (X, ∗) ∈ Ω(X, ∗), it follows that (X, ◦) ∈ BAn(X, ∗) implies

Ω(X, ◦) ∩ BAn(X, ∗) ̸= ∅ and thus BAn(X, ∗) ⊆ BAn+1(X, ∗);
(4) Let BA(X, ∗) = ∪n∈ωBAn(X, ∗) = limn→∞ BAn(X, ∗).

For example, if R is the real numbers and (R, ∗) = (R, +), then x + 2(n)y =
(x + y) + (y + x) = 2(x + y) and x + (n + 1)y = 2n(x + y). Notice that Ω(R,+)
is non-periodic. The presence of “exponential growth” is quite evident in this
particular example

Suppose that |(x + y) − (a + b)| = ρ(x + y, a + b) > 0 for (R, +). Then we
find that |(x+(n+1)y)− (a+(n+1)b| = 2nρ(x+ y, a+ b) so that for Ω(R,+)
we also note that there is “sensitive dependence on initial conditions.”

Given a real number α, if xn + yn = 2−n+1α, then also xn + (n)yn =
2n−1(xn + yn) = 2n−1(2−n+1α) = α, so that the sequence {x1 + y1, x2 +
y2, . . . , xn + yn, . . .} has the property that it shows up “in the neighborhood of
α” for the operations x + (n)y, n = 1, 2, . . ..

Usually the three properties we have illustrated above when taken together
mean that the orbit, in this case (R,+), is chaotic. Precise rules can be provided
in the general situation certainly.

If we consider an operation on R, x⊕y = 1√
2
(x+y), then x⊕y is of the linear

type and x2y = (x⊕y)⊕ (y⊕x) = 1√
2
( 1√

2
(x+y)+ 1√

2
(y +x)) = x+y, so that

(R,⊕) ∈ BA2(R,+) and (R,⊕) ∈ BA1(R, +). If we set x ⊙ y = − 1√
2
(x + y),

then x2y = (x ⊙ y) ⊙ (y ⊙ x) = x + y as well. These appear to be the
only linear groupoids in BA2(R, +)−BA1(R, +), “directly below” (R, +), i.e.,
(R,⊕)2(R,⊕) = (R,⊙)2(R,⊙) = (R, +).

Generally, if x ∗ y = 2n
√

2
(x + y), then x2y = (x ∗ y) ∗ (y ∗ x) = 2n

√
2
( 2n
√

2
(x +

y) + 2n
√

2
(y + x)) = 22n+1

√
2

√
2(x + y) = 22n(x + y) and (R, 2) ∈ Ω(R, +) whereas

(R, ∗) = (R, +(n − 1
2 )) ̸∈ Ω(R, +) produces other elements of BA2(R, +) −
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BA1(R, +). All these are linear groupoids. It appears that there may not be
non-linear groupoids in BA(R, +).

If (R, ∗) has x ∗ y = 1
2 (x + y), i.e., a = b = 1

2 , c = 0, then (x ∗ y) ∗ (y ∗ x) =
1
2 ( 1

2 (x + y) + 1
2 (y + x)) = 1

2 (x + y) = x ∗ y, and thus (R, ∗) = (R, ∗(2)), so that
also (R, ∗) = (R, ∗(n)) for all n, whence Ω(R, ∗) = {(R, ∗)}. If a(ax + by + c) +
b(ay + bx + c) + c = 1

2 (x + y), then (a2 + b2)x + 2aby + (a + b + 1)c = 1
2 (x + y)

yields (a− b)2 = 0, so that a = b = − 1
2 . Since a2 + b2 = −1

2 is impossible in R
there is no linear groupoid (R, ◦) such that (R, ◦)2(R, ◦) = (R, ∗).

§ 6. We let OP ′(X) consist of those (X, ∗) such that x ∗ y = y implies
y ∗ x = y. In terms of the associated digraphs this means that x → y means
y 9 x and the digraph is an orientation. Orientations are important in the
theory of digraphs. Suppose (X, ∗) and (X, ◦) are in OP ′(X). Suppose also
that x2y = (x∗y)∗(y∗x) = y. If x∗y = x, then y∗x = y and x2y = x∗y = y,
an impossibility. Hence x ∗ y = y = y ∗ x so that y2x = x for all x, y ∈ X.
Therefore it is an element of OP (X). We summarize:

Proposition 5. OP ′(X) is a subsemigroup of (OP (X), 2) having an identity.

If (X, ∗) ∈ OP ′(X) and x2y = (x ∗ y) ∗ (y ∗ x), x ∗ y = x yields x2y =
x ∗ (y ∗ x) = x since x ∗ y = x ∗ x = x, x ∗ y = y yields x2y = (x ∗ y) ∗ (y ∗ x) =
y ∗ y = y. Thus, x2y = x ∗ y in any case, i.e., (X, ∗(2)) = (X, ∗) whence
Ω(X, ∗) = {(X, ∗)}, which proves the following:

Proposition 6. All orbits of OP ′(X) are singletons.

Notice that if (X, ∗) ∈ OP (X) and if x2y = (x∗y)∗(y∗x) = y, then x∗y = x
implies x ∗ (x ∗ y) = y whence x ∗ y = y, an impossibility. Thus x ∗ y = y and
y ∗ (y ∗ x) = y. If y ∗ x = x, then (y ∗ x) ∗ (x ∗ y) = x ∗ y = y = y2x = x2y. If
y ∗ x = y, then (y ∗ x) ∗ (x ∗ y) = y ∗ y = y = y2x = x2y. We summarize:

Proposition 7. If (X, ∗) ∈ OP (X), then (X, ∗(2)) ∈ OP ′(X).

If (X, ∗) ∈ OP (X) − OP ′(X), then for some x, y ∈ X,x ̸= y, x ∗ y = y and
y ∗ x = x. Consider (X, ∗(3)). We have

x ∗ (3)y = ((x ∗ y) ∗ (y ∗ x)) ∗ ((y ∗ x) ∗ (x ∗ y))
= (y ∗ x) ∗ (x ∗ y)
= x ∗ y

= y

and x ∗ (2)y = (x ∗ y) ∗ (y ∗ x) = y ∗ x = x. Hence (X, ∗(3)) = (X, ∗)
and (X, ∗(2)) ̸= (X, ∗(1)) so that Ω(X, ∗) = {(X, ∗), (X, ∗(2)), (X, ∗(3)) =
(X, ∗), . . .}, i.e., it has precisely two elements.

Given a poset (X,≤), we let x ∗x = x and if x < y, then x ∗ y = y, x ∗ y = x
otherwise. Hence, if x < y, then x∗y = y and y∗x = y, i.e., (X,≤) generates an
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element (X, ∗) of OP ′(X) with the additional property that x∗ y = y, y ∗ z = z
implies x ∗ z = z, when x ̸= y, y ̸= z.

§ 7. Given (X, ∗) ∈ Bin(X), we shall consider it strong if x ∗ y = y ∗ x
implies x = y. If (X, ∗) and (X, ◦) are strong, then x2y = (x ∗ y) ◦ (y ∗ x) =
(y ∗ x) ◦ (x ∗ y) = y2x implies x ∗ y = y ∗ x and hence x = y as well. We
summarize:

Proposition 8. If Str(X) consists of all strong groupoids, then (Str(X), 2) is
a semigroup with identity.

Given Bin(X), let Za(X) consist of all (X, ∗) such that x∗x = a for all x ∈ X.
Then, if (X, ∗) and (X, ◦) are in Za(X), we have (X, ∗)2(X, ◦) = (X, 2) with
x2x = (x ∗ x) ◦ (x ∗ x) = a ◦ a = a, so that (X, 2) ∈ Za(X), i.e., Za(X) is a
semigroup. In this case the left zero semigroup is not an element of Za(X). In
addition note that Za(X) 2Zb(X) ⊆ Zb(X). In fact Bin(X)2Za(X) ⊆ Za(X).
Indeed, (x∗x)◦(x∗x) = a = x2x in that case. Also, (x◦x)∗(x◦x) = a∗a = x2x
which varies with (X, ∗) ∈ Bin(X). Hence (Za(X), 2) is a left ideal of (Bin(X),
2). We summarize:

Proposition 9. (Za(X), 2) is a left ideal of (Bin(X), 2).

Given Bin(X) let Na(X) consist of all (X, ∗) such that a ∗ x = a for all
x ∈ X. If (X, ∗) and (X, ◦) are elements of Na(X), then a2x = (a∗x)◦(x∗a) =
a ◦ (x ∗ a) = a and (Na(X),2) is a semigroup with identity, since the left zero
semigroup belongs to Na(X) for all a ∈ X. In fact, if (X, ∗) ∈ ∩a∈XNa(X),
then (X, ∗) is the left zero semigroup precisely. We summarize:

Proposition 10. (Na(X),2) is a semigroup with identity.

It follows that (Str(X) ∩ Za(X) ∩ Na(X), 2) is a semigroup. We note that
(X, ∗, 0) is a d-algebra [11] provided (i) x ∗ x = 0; (ii) 0 ∗ x = 0; (iii) x ∗ y =
y ∗ x = 0 if and only if x = y. If (iii)

′
x ∗ y = y ∗ x if and only if x = y, then we

consider the d-algebra to be strong. Otherwise we consider the d-algebra to be
exceptional. For details, see [9, 10]

The strong d-algebras are those (X, ∗) which belong to Str(X) ∩ Z0(X) ∩
N0(X), which automatically determine a semigroup by the observation made
above. Strong d-algebras have been discussed in [3] as a subclass of the class
of d-algebras with particular properties of interest both by themselves as well
as in their relationship with the larger class of d-algebras.

Example 11. Given a poset (X,≤) with minimal element 0, the standard
BCK-algebra [4, 5] for this poset is defined as (X, ∗, 0) where x ∗ y = 0 if
x ≤ y, x∗y = x otherwise. Thus x∗x = 0, 0∗x = 0. Assume that x∗y = y ∗x.
If x ≤ y, then y ∗ x = x ∗ y =, i.e., y ≤ x. Since (X,≤) is a poset, x = y.
Similarly it holds for the case y ≤ x also. Otherwise, x ∗ y = x = y ∗ x = y.
Hence (X; ∗, 0) is a strong d-algebra.
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Example 12. Given a field K, let (K, ∗) be the groupoid where x∗y = x(x−y).
Then x ∗ x = 0, 0 ∗ x = 0 and x ∗ y = y ∗ x = 0 implies x = y. On the other
hand, x ∗ y = y ∗ x means x(x− y) = y(y − x) or (x + y)(x− y) = 0 and x = y
or x = −y. Hence if char(K) ̸= 2, then (K, ∗, 0) is an exceptional d-algebra.

§ 8. Suppose (X, ∗) contains elements 0 and b such that 0 ∗ x = 0 and
x ∗ b = 0 for all x ∈ X. If b1 and b2 are type b elements with respect to 0,
then b1 ∗ b2 = b2 ∗ b1 = 0. Hence, if (X, ∗, 0) is a d-algebra, then b1 = b2

and b is unique. Under these circumstances if (X, ∗) is of this type, then
x2b = (x ∗ b) ◦ (b ∗ x) = 0 ◦ (b ∗ x) = 0 if (X, ◦) has the same 0, while
02x = (0 ∗ x) ◦ (x ∗ 0) = 0 ◦ (x ∗ 0) = 0 as well if this is the case. Thus, if
(X, ◦) ∈ N0(X) and (X, ∗) ∈ N b

0(X), where N b
0(X) consists of all (X, ∗, 0, b)

with 0 ∗ x = 0 and x ∗ b = 0, then N b
0(X)2N0(X) ⊆ N b

0(X).

Combining this with the result on strong d-algebras we observe that “for
bounded strong d-algebras the bound is unique and the product (X, ∗, 0, b)
2 (X, ∗, 0) of strong d-algebras is again a bounded strong d-algebra. It fol-
lows that the semigroup of bounded strong d-algebras is a right ideal in the
semigroup of strong d-algebras (sharing the 0 element).

Using the notation ¬x = b ∗ x, x ⊕ y = ((¬x) ∗ ((¬x) ∗ (¬y))) we can then
seek to add further conditions on (X, ∗) so as to obtain MV -algebras (X,⊕)
(see [1, 2]) with some added properties perhaps.

§ 9. Suppose that Ab(X) consists of all groupoids (X, ∗) which are abelian
(commutative), i.e., x∗y = y∗x for all x, y ∈ X. Note that if (X, ∗) ∈ Ab(X) and
(X, ◦) is an arbitrary groupoid, then in (X, ∗)2(X, ◦), x2y = (x ∗ y) ◦ (y ∗x) =
(y∗x)◦(x∗y) = y2x. Also, (X, ◦)2(X, ∗) = (X, 2) with x2y = (x◦y)∗(y◦x) =
(y ◦ x) ∗ (x ◦ y) = y2x. We summarize:

Proposition 13. (Ab(X), 2) is a two-sided ideal of (Bin(X), 2).

This indicates that commutativity is a rather stronger property than others
which do not generate two-sided ideals. Of course, if a two-sided ideal (I, 2)
contains the left zero semigroup then I = Bin(X). Hence properties which are
satisfied by the left zero semigroup can only be measured in terms of ideals
(types) by considering their complements.

Suppose for example that (X, ∗) is not strong. Then for some x ̸= y, x ∗ y =
y∗x. Hence, if (X, ◦) is arbitrary, then (X, ∗)2(X, ◦) has x2y = (x∗y)◦(y∗x) =
(y ∗ x) ◦ (x ∗ y) = y2x, where x ̸= y. We summarize:

Proposition 14. (Bin(X) − Str(X), 2) is a right ideal of (Bin(X), 2).

Combining Propositions 8 and 14 yields an interesting decomposition of
(Bin(X), 2)into the union of a right ideal and a subsemigroup with identity
analogous to that of a local ring with identity into a group of units and a
maximal ideal.
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Theorem 15. If (X, ◦) has the property that X ◦ X = X, and given x, y,
there are a, b such that a ◦ b = x, b ◦ a = y, then (X, ◦)2(X, ∗) is also in
(Bin(X) − Str(X), 2).

Proof. Let x ∗ y = y ∗ x, x ̸= y. Then a ◦ b = x, b ◦ a = y implies a ̸= b.
Furthermore a2b = (a ◦ b) ∗ (b ◦ a) = x ∗ y = y ∗ x = (b ◦ a) ∗ (a ◦ b) = b2a, so
that (X, 2) is not strong, as asserted. ¤

If (X, ∗) has the property that Ω(X, ∗)∩Ab(X) ̸= ∅, then (X, ∗(n)) ∈ Ab(X)
implies (X, ∗(n + 1)) = (X, ∗(n)) ∗ (X, ∗) ∈ Ab(X) as well. Thus, if HAb(X)
consists of all (X, ∗) such that Ω(X, ∗) ∩ Ab(X) ̸= ∅, then we may associate
with (X, ∗) a hypo-abelian index n where n is the smallest positive integer such
that (X, ∗(n)) ∈ Ab(X), with n = 1 meaning (X, ∗(1)) = (X, ∗) is abelian.

Example 16. If (G, ·, e) is a group, then we shall consider it “hypo-abelian”
if xy2x = yx2y for all x, y ∈ G, i.e., x2y = (x ·y) · (y ·x) = (y ·x) · (x ·y) = y2x
in terms of our language developed here. There are many non-abelian groups
of this type, e.g., the dihedral group D4 and the quaternion group Q both of
order 8 are of this type.

Example 17. Let (R, ∗) be defined by x ∗ y = 1
2x + y. Then 2 ∗ 1 = 2 and

1 ∗ 2 = 5
2 , and (R, ∗) ̸∈ Ab(R). Now, (R, ∗(2)) has x ∗ (2)y = (x ∗ y) ∗ (y ∗ x) =

1
2 ( 1

2x+y)+( 1
2y+x) = 5

4x+ 3
2y, x∗ (3)y = (x∗ (2)y)∗ (y ∗ (2)x) = 1

2 ( 5
4x+ 3

2y)+
( 5
4x + 3

2y) = 17
8 x + 2y, etc.. With a little work one shows Ω(R, ∗)∩Ab(X) = ∅

and thus (R, ∗) ̸∈ HAb(R).

§ 10. Given a function µ : X → R, let µDom(X) consists of all (X, ∗)
such that µ(x ∗ y) ≥ min{µ(x), µ(y)}. If Imµ ⊆ [0, 1], then (X, ∗) is a fuzzy
subalgebra. If (X, ∗) and (X, ◦) are elements of µDom(X), then (X, ∗)2(X, ◦)
yields µ(x2y) = µ((x∗y)◦ (y ∗x)) ≥ min{µ(x∗y), µ(y ∗x)} ≥ min{µ(x), µ(y)}.
We summarize:

Proposition 18. (µDom(X), 2) is a subsemigroup of (Bin(X), 2) with iden-
tity.

Indeed, x ∗ y = x implies µ(x ∗ y) = µ(x) ≥ min{µ(x), µ(y)}.
If we let µDom∗(X) consist of all (X, ∗) such that µ(x∗y) ≤ max{µ(x), µ(y)},

then (X, ∗)2(X, ◦) yields µ(x2y) = µ((x∗y)◦(y∗x)) ≤ max{µ(x∗y), µ(y∗x)} ≤
max{µ(x), µ(y)}. We summarize:

Proposition 19. (µDom∗(X), 2) is a subsemigroup of (Bin(X), 2).

If one is interesting in fuzzy aspects of the theory of groupoids, these propo-
sitions may make good starting points for further development.

§ 11. Given (X, ∗) ∈ Bin(X), let F (X, ∗) = {µ : X → R | (X, ∗) ∈
µDom(X)}. Then λ > 0 implies λµ(x ∗ y) ≥ min{λµ(x), λµ(y)}. Also,
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µ, ν ∈ F (X, ∗) implies µ + ν ∈ F (X, ∗), so that F (X, ∗) is a cone. Simi-
larly, F ∗(X, ∗) = {µ : X → R|(X, ∗) ∈ µDom∗(X)} is a cone. Hence, if (X, ∗)
is the left zero semigroup, then F (X, ∗) = F ∗(X, ∗) = RX .

Since (X, ∗) ∈ µDom(X) implies (X, ∗(n)) ∈ µDom(X) and thus F (X, ∗(n))
⊇ F (X, ∗), with F ∗(X, ∗(n)) ⊇ F ∗(X, ∗) one may impose an “order” on Bin(X)
by setting (X, ∗) ≤ (X, ◦) provided F (X, ∗) ⊆ F (X, ◦) with maximal elements
including the left zero semigroup for example.

Questions involve comparisons of groupoids (X, ∗) and (X, ◦) for which
F (X, ∗) = F (X, ◦), F ∗(X, ∗) = F ∗(X, ◦), etc..

For example, if (X, ∗) has x ∗ y ̸∈ {x, y}, let µ(x) = µ(y) = 1 and µ(z) = 0 if
z ̸∈ {x, y}, then µ(x ∗ y) = 0 < min{µ(x), µ(y)} and thus (X, ∗) ̸∈ µDom(X).
Hence, if F (X, ∗) = RX , then x∗y ∈ {x, y}. On the other hand, if x∗y ∈ {x, y},
then µ(x ∗ y) ≥ min{µ(x), µ(y)} for all µ ∈ RX .

§ 12. As a final perspective, suppose (X, ·) is an abelian groupoid, then
(X, ∗) is said to be separable over (X, ·) if x ∗ y = f(x) · g(y) for some maps
f, g : X → X. If g(y) = a is a constant, then x ∗ y = f(x) · g(y) = f(x)a
implies certain leftoids are separable over (X, ·). If x · e = x for all x ∈ X,
then g(y) = e and x ∗ y = f(x) = f(x) · e implies all leftoids are separable over
(X, ·).

If we consider x2y = (x ∗ y) · (y ∗ x) = f(x ∗ y) · g(y ∗ x) = f(f(x) · g(y)) ·
g(f(y)·g(x)). In general we may not expect that (X, 2) is separable over (X, ·).

If φ : (X, ·) → (X, ·) is an endomorphism, then φ(x · y) = φ(x) · φ(y) and
thus if we define x ∗ y = φ(x) · φ(y) = φ(x · y), then (X, ∗) is separable over
(X, ·). Now (x∗y) · (y ∗x) = φ(x∗y) ·φ(y ∗x) = φ(φ(x) ·φ(y)) ·φ(φ(y) ·φ(x)) =
φ2(x) · φ2(y)φ2(y) · φ2(x) = (φ2(x) · φ2(x)) · (φ2(y) · φ2(y)) and thus (X, ∗(2))
is again separable over (X, ·) in this setting. We summarize:

Proposition 20. (X, ∗(n)) is separable over (X, ·) for any n.

Suppose that (X, ∗) = (R, +) and suppose that x ∗ y = ax + by + c defines
a linear groupoid. Then x ∗ y = (ax) + (by + c) is separable over (R, +).
Furthermore, since (R, ∗(n)) is also a linear groupoid, it is also separable in
this case. Although somewhat similar to the previous case, it is not quite the
same.

We shall say a binary system (X, ∗) futuristic over (X, ·) if (R, ∗(n)) is sep-
arable over (X, ·). The examples above are certain large classes. It may be of
interest to determine separable and futuristic binary systems for certain types
of binary systems. Notice that every binary system (X, ·) is trivially separable
over itself. Since we assume (X, ·) is abelian, then (x · y) · (y · x) = x2y2 and
x · (n + 1)y = x2n · y2n

, so that it is also futuristic over itself.



660 HEE SIK KIM AND JOSEPH NEGGERS

If (X, ·) is the left zero semigroup and if (X, ∗) is separable over (X, ·), then
x ∗ y = f(x) · g(y) = f(x), i.e., (X; ∗, f) is a leftoid. Conversely, if (X; ∗, f) is
a leftoid, then x ∗ y = f(x) = f(x) · y for example, i.e., it is separable over the
left zero semigroup.

§ 13. Hopefully this short description of various perspectives has been suf-
ficiently persuasive in providing evidence that the semigroups (Bin(X), 2)are
themselves of great interest and that they may be helpful in providing tools,
questions and opportunities for applications in other areas of study.

Given what is known about iterated function systems and concepts like
chaos, the butterfly effect, etc. associated with these and their orbits, the notion
of attractors, both strange and otherwise, and its importance in the physical
sciences it may be noted that any subsemigroup of (Bin(X), 2)is naturally an
orbit, with the concepts like chaos, the butterfly effect, etc. naturally built in.
Thus, e.g., the fact that strong (i.e., x∗y = y∗x implies x = y) groupoids defined
on a base set X form a subsemigroup of (Bin(X), 2)indicates that one may use
these to advantage in modeling physical systems should the opportunity arise.

The fact that different properties or axioms generate interesting substruc-
tures of (Bin(X), 2)for arbitrary sets X may also serve as a classification
level of these properties of axioms. One may think of a classification level
somewhat along these lines: (i) level A: no special properties in general; (ii)
level B: groupoids at this level for any set X generate a subsemigroup; (iii)
level C: groupoids at this level for any set X generate a left ideal; (iv) level
C′: groupoids at this level for any set X generate a right ideal; (v) level D:
groupoids at this level for any set X generate a two-sided ideal; (vi) level E:
groupoids at this level for any set X generate a subgroup (of units) of (Bin(X),
2). Other distinctions can also be made. In the previous sections we have
given many examples of properties at various levels.

For those taking the view of universal algebra or category theory, we note
that our viewpoint is somewhat complementary in that we are not overly con-
cerned with constructions such as direct products, sums, algebra types etc..
Our main construction is a composition of groupoids defined on a fixed set X.
It is certainly possible to combine this construction with other notions such
as those coming from category theory. To do so at this time seems highly
premature in any case.

Again, the various perspectives provided above, along with the examples
are meant to illustrate a number of concepts associated with the semigroups
(Bin(X), 2)for sets X which we believe are interesting themselves and which
may be of use in applications also.
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