• Title/Summary/Keyword: ${\alpha}_2$-adrenergic agonist

Search Result 49, Processing Time 0.028 seconds

Control of Parturition Time on Pig II. Effect of Sympathetic Nerve and Adrenergic Agonist on Uterine Smooth Muscle Motility (돼지 분만 시기의 조절에 관하여 II. 자궁 평활근의 운동성에 대한 교감신경과 Adrenergic Agonist의 영향)

  • 심철수;이양성;임종옥
    • Korean Journal of Veterinary Service
    • /
    • v.17 no.3
    • /
    • pp.255-263
    • /
    • 1994
  • To elucidate the action of the adrenergic nerve on the isolated uterine smooth muscle of the pig, effects of electrical transmural nerve stimulation and norepinephrine were investigated on the pretreatment of phentolamine ; non-selective ${\alpha}$-adrenoceptor blocker, propranolol ; ${\beta}$-adrenoceptor blocker and the yohimbine;${\alpha}_2$-selective adrenoceptor blocker from physiograph. 1. The relaxation response induced by norepinephrine was the concentration of $10^{-6}$ M at first and maximum response was concentration of $10^{-4}$M. 2. The relaxation response induced by norepinephrine was not effected by the pretreatment with non-selective $\alpha$-adrenoceptor blocker, phentolanune ($10^{-6}$ M) but was completely blocked by the pretreatment with ${\beta}$-adrenoceptor blocker, propranolol($10^{-6}$ M). 3. The contractile response induced by electrical transmural nerve stimulation(20V, 10Hz, 0.5msec, 20sec ) was inhibited by the pretreatment with non-selective ${\alpha}$-adrenoceptor blocker, phentolamine($10^{-6}$ M) but was not inhibited and rather increased by the pretreatment ${\beta}$-adrenoceptor blocker, propranolol($10^{-6}$ M), and was not approximately effected by the pretreatment with ${\alpha}_2$-adrenoceptor blocker, yohimbine($10^{-6}$ M). These finding suggest that it was excitatory action by ${\alpha}_1$-adrenergic nerve and inhibitory action by ${\alpha}_2$-adrenergic, ${\beta}$-adrenergic nerve on uterine smooth muscle of the pig.

  • PDF

The Analgesic Effect and the Mechanism of Electroacupuncture on Thermal Hyperalgesia in the Rat Model of Collagenase-induced Arthritis: Mediation by Adrenergic Receptors (Collagenase-induced Arthritis Rat Model에서 Thermal Hyperalgesia에 대한 전침(電鍼)의 진통효과(鎭痛效果) 및 기전연구: Adrenergic Mechanism에 대(對)한 연구(硏究))

  • Seo, Byung-Kwan;Park, Dong-Suk;Baek, Yong-Hyeon
    • Journal of Acupuncture Research
    • /
    • v.28 no.2
    • /
    • pp.57-67
    • /
    • 2011
  • 목적 : Collagenase-induced osteoarthritis(OA) 동물 모델에서 전침의 adrenergic mechanism을 연구하고자 한다. 방법 : Collagenase-induced arthritis(CIA)를 유발하기 위하여 5주령의 male Sprague-Dawley rat의 뒷다리 좌측 무릎 관절에 0.05ml의 4mg/ml collagenase solution을 intra-articular 주입하고, 다시 4일 후에 같은 부위에 같은 농도의 collagenase solution을 intra-articular boosting injection 시행한 뒤, gross, histopathological features 및 biomarker activity 변화를 관찰하였다. 예비실험을 통하여 CIA rat model에서 진통효과를 발휘하는 것으로 확인한, 족삼리(足三里) ($ST_{36}$)에 대한 저빈도 train pulse EA stimulation (2Hz, 0.07 mA, 0.3ms)을 침치료 방법으로 적용하였다. 전침의 진통기전을 확인하기 위하여, ${\alpha}1$-adrenergic antagonist (prazosin, 1 mg/kg, i.p.), ${\alpha}2$-adrenergic receptor antagonist (yohimbine, 2mg/kg, i.p.), ${\alpha}1$-adrenergic receptor agonist(phenylephrine, 2mg/kg, i.p.), ${\alpha}2$-adrenergic receptor agonist(clonidine, $40{\mu}g$/kg, i.p.)을 전침시행 20분 전에 복강 내로 전처치하였다. Tail flick unit(Ugo Basile Model 7360)을 이용하여 열자극에 대한 통증역치를 측정하였다. 결과 : 퇴행성관절염 징후(gross, histopathological features)와 통증역치의 변화가 최대값을 나타내는 CIA 유발 4주차에 저빈도 전침자극(train pulse, 2Hz, 0.07mA, 0.3ms)을 족삼리($ST_{36}$)에 적용하였으며, 족삼리 전침의 진통효과는 ${\alpha}2$-adrenergic receptor antagonist(yohimbine, 2mg/kg, i.p.)전처치에 의해 억제되었으나, ${\alpha}1$-adrenergic antagonist(prazosin, 1 mg/kg, i.p.)전처치에는 억제되지 않았다. 또 ${\alpha}2$-adrenergic receptor agonist(clonidine, $40{\mu}g$/kg, i.p.)의 전처치를 통하여 유의한 synergistic analgesic effect가 관찰되었으나, ${\alpha}1$-adrenergic receptor agonist(phenylephrine, 2mg/kg, i.p.)의 전처치는 전침의 진통효과에 synergistic effect를 미치지 않는 것으로 나타났다. 결론 : 저빈도 족삼리 전침은 CIA로 유발된 염증성 통증에 대하여 진통효과를 발휘하며, 이는 ${\alpha}2$-adrenergic receptor에 의하여 매개되는 것으로 보이며 ${\alpha}1$-adrenergic receptor는 영향을 미치지 않는 것으로 사료된다.

Studies on the Mechanism of Renal Action Induced by Idnzoxan, $\alpha$$_2$-Adrenergic Antagonist, in Dog ($\alpha$$_2$-교감신경 수용체 차단제인 Idazoxan의 신장작용의 기전에 관한 연구)

  • 고석태;강경원
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.125-131
    • /
    • 2000
  • Idazoxan, $\alpha$$_2$-adrenergic antagonist, produced antidiuretic action by administration into the vein and diuretic action only in ipsilateral kidney by injection into a renal artery in dog. These studies were performed for investigation of mechanism on the renal action induced by idazoxan. Antiduretic action by idazoxan given into vein and diuretic action only in ipsilateral kidney by idazoxan injected into a renal artery were blocked entirely by renal denervation. Antidiuretic action of idazoxan given into the vein was weakened by UK 14,304, $\alpha$$_2$-adrenergic agonist, pretreated into the vein. Above results suggest that antidiuretic action of idazoxan given into the vein is caused by blocking of $\alpha$$_2$-adrenergic receptor, diuretic action only in ipsilateral kidney of idazoxan injected into a renal artery by blocking of $\alpha$$_2$-adrenergic receptor in the kidney.

  • PDF

Vasomotor Regulation of the Israeli Carp (Cyprinus carpio) Ventral Aorta by Cholinergic and Adrenergic Neurotransmitters (콜린성 및 아드레날린성 신경전달물질에 의한 이스라엘잉어 복대동맥의 혈관긴장도 조절기능)

  • Park, Kwan-Ha
    • Korean Journal of Ichthyology
    • /
    • v.12 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • Depending on the fish species the vascular tone is distinctively regulated by numerous vasoactive substances. In most fish species the regulatory role of autonomic neurotransmitters and other vasoactive substances are not well defined. This research was designed to delineate the regulatory role of various endogenous autonomic neurotransmitters known to be important in mammalian vascular systems on isolated Israeli carp ventral aorta. Acetylcholine(ACh) contracted the aorta regardless of the pre-existing level of vascular tone, and the contraction was almost completely abolished by a cholinergic-muscarinic antagonist atropine. Endogenous, multiple receptor ($\alpha$ and $\beta$)-acting adrenergic agonist epinephrine (Epi) relaxed the vessel in the presence and absence of the pre-existing tones. Another endogenous multiple receptoracting agonist norepinephrine (NE) weakly contracted the aorta in non-preconstrcted state, but the response was reversed to relaxation when preconstricted. Isoproterenol, ${\alpha}\;{\beta}$ adrenergic receptor agonist, was a potent vasodilator whereas an ${\alpha}_1$ agonist phenyephrine was a contractor. The ${\alpha}_2$ adrenergic receptor agonist clonidine has not any significant effect in altering the vascular tone. The vasorelaxing action of Epi, NE and isoproterenol was significantly attenuated by $\beta$ receptor antagonist propranolol. These results imply that ACh may primarily play a contractor role via muscarinic receptor activation while adrenergic agonists, Epi and NE, are relaxants through activation of $\beta$ adrenergic receptors in vivo.

  • PDF

Effects of UK 14,304, An ${\alpha}_2$-Adrenergic Agonist, on Renal Function in Dog (${\alpha}_2$-아드레날린 효능약인 UK 14,304의 신장기능에 미치는 영향)

  • Ko, Suk-Tai;Kim, Hai-Suk;Choi, Hong-Seok
    • YAKHAK HOEJI
    • /
    • v.41 no.4
    • /
    • pp.498-511
    • /
    • 1997
  • The effects of UK 14,304, an ${\alpha}_2$-adrenergic agonist, on renal function were investigated in dogs. UK 14,304, when given intravenousely($15.0{\mu}g/kg,\;50{\mu}g/kg$), produced the increase of urine flow accompanied with the marked augmentation of free water clearance ($C_{H_2O}$) and reabsorption rates of sodium in renal tubules ($R_{Na}$), and the remarkable decrease of osmolar clearance ($C_{osm}$) and the amounts of sodium excreted in urine ($E_{Na}$). UK 14,304 given into a renal artery($1.5{\mu}g/kg,\;5.0{\mu}g/kg$) elicited the increase of urine flow with the augmentation of $C_{H_2O}$ in both kidney. UK 14,304, when administered into carotid artery($3.0{\mu}g/kg,\;10.0{\mu}g/kg$). exhibited the same aspect as shown in intravenous UK 14.304 at smaller dose than the intravenous dose. Diuretic action of intravenous UK 14,304 were produced together with increase of $C_{H_2O}$ in situation of water diuresis too, changes of renal function in this state were the increase of $C_{osm},\;E_{Na},\;and\;E_K$ (excreted amounts of potassium in urine), and the decrease of $R_{Na}\;and\;R_K$, these were different appearances from situation of saline diuresis. Diuretic action of intravenous UK 14,304 were blocked completely by post or pretreatment of yohim-bine, ${\alpha}_2$-adrenergic blocking agents, and inhibited by pretreatment of vasopressin, antidiuretic hormone. Above results suggest that UK 14,304 produces the diuretic action by the inhibition of vasopressin secretion and suppression of electrolytes reabsorption of electrolytes in renal tubules mediated with central ${\alpha}_2$-adrenoceptor in dog.

  • PDF

Effect of Adrenergic Receptors on the Nerve Conduction in Rat Sciatic Nerves (아드레날린 수용체가 백서 좌골신경의 신경전도에 미치는 영향)

  • Lee, Chung;Chung, Sung-Lyang;Choi, Yoon;Leem, Joong-Woo;Lim, Hang-Soo;Yang, Hyun-Cheol;Han, Sung-Min;Kong, Hyun-Seok;Lim, Seung-Woon
    • The Korean Journal of Pain
    • /
    • v.12 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • Background: Clonidine, an ${\alpha}_2$ adrenergic agonist blocks nerve conduction. However, in our previous experiment we found that adrenaline neither blocks nerve conduction by itself nor augment nerve conduction blockade by lidocaine near clinical concentrations. Possible explanations are: 1) there may be antagonism between some of adrenergic receptors, 2) clonidine may block nerve conduction via non-adrenergic mechanism. The purpose of this study is to obtain dose-response curves of several different forms of adrenergic receptor agonist to see the relative potencies of each adrenergic receptors to block nerve conduction. Methods: Recordings of compound action potentials of A-fiber components (A-CAPs) were obtained from isolated sciatic nerves of adult male Sprague-Dawley rats. Nerve sheath of the sciatic nerve was removed and desheathed nerve bundle was mounted on a recording chamber. Single pulse stimuli (0.5 msec, supramaximal stimuli) were repeatedly applied (2Hz) to one end of the nerve and recordings of A-CAPs were made on the other end of the nerve. Dose-response curves of epinephrine, phenylephrine, isoproterenol, clonidine were obtained. Results: $ED_{50}$ of each adrenergic agonist was: $4.51\times10^{-2}$ M for epinephrine; phenylephrine, $7.74\times10^{-2}$ M; isoproterenol, $9.61\times10^{-2}$ M; clonidine, $1.57\times10^{-3}$ M. Conclusion: This study showed that only clonidine, ${\alpha}_2$ adrenergic agonist, showed some nerve blocking action while other adrenergic agonists showed similar poor degree of nerve blockade. This data suggest that non-effectiveness of epinephrine in blocking nerve conduction is not from the antagonism between adrenergic receptors.

  • PDF

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

The characteristics of adrenergic responses in tilapis dorsal aorta (틸라피아 배대동맥의 아드레날린성 반응의 특성)

  • Choi, Dong-Lim;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.9 no.1
    • /
    • pp.41-51
    • /
    • 1996
  • The present study was undertaken to investigate the physiological characteristics of the adrenergic responses in the tilapia dorsal aorta. Epinephrine, norepinephrine, clonidine and methoxamine in the presence of propranolol($3{\times}10^{-6}$M), induced only endothelium-independent and concentration-dependent vasocontractions in tilapia dorsal aorta. The rank order of potency of adrenergic agonists inducing vasocontraction was epinephrine>norepinephrine>phenylephrine>clonidine>ethoxamine, Yohimbine produced a parallel shift of the concentration-vascontraction curves of epinephrine, norepinephrine, phenylephrine and clonidine to the right, while prazosin depressed the maximum responses of epinephrine and norepinephrine. Calcium-free physiological solution and verapamil markedly reduced epinephrine or norepinephrine-induced vasocontractions. These results suggest that a-adrenergic agonists produce only on endothelium-inedpenent casoconstrictions in tilapia dorsal aorta and these effect of a-adrenergic agonists, which might be associated with both calcium release from intracellular stores and calcium influx through voltage-dependent calcium channel.

  • PDF

A Case of Amitraz Insecticide Intoxication after Ingestion of Large Amount (많은 양을 음독한 급성 amitraz 살충제 중독 1례)

  • Suh, Joo-Hyun;Roh, Hyung-Keun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.6 no.1
    • /
    • pp.52-56
    • /
    • 2008
  • Amitraz is used as farm-animal insecticide. Its side effects in humans are related to its pharmacological activity on alpha 2-adrenergic receptors. The case describes a previously healthy 46-year-old woman who intentionally ingested approximately 250mL of liquid amitraz. She presented with vomiting, altered mental status, miosis, dry mouth, hypopnea, metabolic and respiratory acidosis, hypotension, hypothermia, polyuria, metabolic acidosis, elevated serum aminotransferase and abdominal distension. Supportive treatments including mechanical ventilation, hydration, dopamine infusion, bicarbonate infusion and gastric decompression resulted in improvement. By hospital day 3, she recovered with resolution of abdominal distension. It is paramount to recognize amitraz poisoning when a pesticide-intoxicated patient presets with signs and symptoms consistent with organophosphate intoxicated patients but with greater alpha 2-adrenergic related symptoms such as decreased bowel motility and xerostomia.

  • PDF

Effect of Renal Denervation on Diuretic Action of UK 14,304, $\alpha$$_2$-Adrenergic Agonist, in Dog ($\alpha$$_2$-아드레날린 효능제인 UK 14,304의 이뇨작용에 대한 신장신경 제거의 영향)

  • KO, Suk-Tai;NA, Han-Kwang
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.351-356
    • /
    • 1997
  • This study was performed in order to investigate the effect of renal denervation on diuretic action of UK 14, 304, $\alpha$$_2$-Adrenergic Agonist, administered into the vein and the carotid artery in dog. The diuretic action of UK 14, 304 administered into the vein or the carotid artery was reversed to the antidiuretic action by renal denervation, this time, the decrease of N $a^{+}$excretion amounts in urine ( $E_{Na}$ ) and the increase of N $a^{+}$ reabsorption rates in renal tubule ( $R_{Na}$ ) were exhibited. This results suggest that central diuretic action of UK 14, 304 is mediated by renal nerves and the antidiuretic action of UK 14, 304 in denervation kidney is caused by the increase of N $a^{+}$reabsorption rates ( $R_{Na}$ ) in renal tubules in dog.n dog.

  • PDF