• Title/Summary/Keyword: ${\alpha}$-glucan

Search Result 123, Processing Time 0.029 seconds

Functional Expression of Amylosucrase, a Glucan-Synthesizing Enzyme, from Arthrobacter chlorophenolicus A6

  • Seo, Dong-Ho;Jung, Jong-Hyun;Choi, Hyun-Chang;Cho, Hyun-Kuk;Kim, Hee-Hang;Ha, Suk-Jin;Yoo, Sang-Ho;Cha, Jaeho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1253-1257
    • /
    • 2012
  • A gene (acas) designated as ${\alpha}$-amylase was cloned from Arthrobacter chlorophenolicus A6. The multiple amino acid sequence analysis and functional expression of acas revealed that this gene really encoded an amylosucrase (ASase) instead of ${\alpha}$-amylase. In fact, the recombinant enzyme exhibited typical ASase activity by showing both sucrose hydrolysis and glucosyltransferase activities. The purified enzyme has a molecular mass of 72 kDa and exhibits optimal hydrolysis activity at $45^{\circ}C$ and a pH of 8.0. The analysis of the oligomeric state of ACAS with gel permeation chromatography revealed that the ACAS existed as a monomer.

Elicitors which Induce the Accumulation of p-Coumaroylamino Acids in Ephedra distachya Cultures

  • Song, Kyung-Sik;Sankawa, Ushio;Ebizuka, Yutaka
    • Archives of Pharmacal Research
    • /
    • v.17 no.1
    • /
    • pp.26-30
    • /
    • 1994
  • Some ammonium oxalate soluble pectic fragments prepared from cultured cell wall of Ephycla distrahya elicited the accumulation of p-coumarocylamino acids (p-CAA) in E. distachya cultures while water soluble and alkali soluble fractions had no activity. Partial purification of the pectic fragments fraction using DEAE-cellulose chromatography afforded two active fractions (PS-I and PS-II) which were composed of mainly uronic acids (98-99 w/w %). They elicited the accumulation of p-CAA in an amount of 52-60 nmol per gram fresh weight of cultures. The acidic sugar compositions of PS-I and PS-II were found to be galacturonic acid and glucuronic acid by TLC analysis. They were supposed to act as endogenous elicitors of p-CAA accumulation. In order to investigate the effect of ethylene on p-CAA accumulation, Ethrel, which is known as ethylene generator, and ACC(1-aminocyclopropane-1-carboxylic acid), a direct precusor of ethylene biosynthesis, were added to the culture. However, they did not glycopeptide elicitor [(Con A-II)], either. Consequently, no relationships between ethylene and p-CAA accumulation were recognized. Several tentative elicitors were teted for their activity. Commercial yeast glucan, $CuCl_2$, laminarin and laminariheptaose had slight activity whereas ${\alpha}$-methylmannopyranoside and commercial yeast mannan had no elicitor activity. ${\alpha}$-methylmannopyranoside which has been known as a tentative inhibitor of glucan elicitor in Glycine max did not affect on the elicitor activity of Con A-II.

  • PDF

Characterization of Cell Wall Proteins from the soo1-1/ret1-1 Mutant of Saccharomyces cerevisiae

  • Lee, Dong-Won;Kim, Ki-Hyun;Chun, Se-Chul;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.219-223
    • /
    • 2002
  • In order to investigate the function of Soo1p/${\alpha}$-COP during post-translational modification and intra-cellular transport of cell wall proteins in Saccharomyces cerevisiae, cell wall proteins from the soo1-1/ret1-1 mutant cells were analyzed. SDS-PAGE analysis of biotin labeled cell wall proteins suggested that the soo1-1 mutation impairs post-translational modification of cell wall proteins, such as N- and/ or Ο-glycosylation. Analysis of cell wall proteins with antibodies against ${\beta}$-1,3-glucan and ${\beta}$-1,6-glucan revealed alteration of the linkage between cell wall proteins and ${\beta}$-glucans in the soo1-1 mutant cells. Compositional sugar analysis of the cell wall proteins also suggested that the soo1-1 mutation impairs glycosylation of cell wall protein in the ER, which is crucial for the maintenance of cell wall integrity.

Isolation of Aspergillus fumigatus and Properties of It's Enzyme for Rhodotorula glutinis Cell Wall Lysis (Rhodotorula glutints 세포벽 용해효소를 생산하는 Aspergillus fumigatus의 분리와 그 효소의 특성)

  • 반재구;이준식
    • Korean Journal of Microbiology
    • /
    • v.22 no.4
    • /
    • pp.215-222
    • /
    • 1984
  • A fungus producing cell wall lytic enzyme for Rhodotorula glutinis was isolated from local soil and identified partially as a species of Aspergillus fumigatus group. Thd cell wall lytic enzyme was an inducible exoenzyme and composed of at least lytic polysaccharidase and protease which act cooperatively in the lysis of intact cells. The lytic polysaccharidase was not able to hydrolyze ${\beta}-1,\;3\;and\;{\beta}-1$, 6-glucan which have the same types of bond as found in the cell wall of Ascomycetous yeasts. The lytic polysaccharidase alone was sufficient to hydrolyze the fractionated cell wall (alkali-insoluble residues) of R. glutinis, whereas it showed low activity against intact cells.

  • PDF

Glycogen Storage Disease Type III Confirmed by AGL Gene Analysis (AGL 유전자 검사로 확진된 제 3a형 당원병 1례)

  • Suh, Junghwan;Koo, Kyo Yeon;Kim, Kyu Yeun;Lee, Chul Ho;Yang, Jeong Yoon;Lee, Jin-Sung
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.2
    • /
    • pp.108-112
    • /
    • 2012
  • Glycogen storage disease type III (GSD type III, OMIM #232400) is a rare autosomal recessive disease caused by a deficiency of the glycogen-debranching enzyme (GDE) with a mutation in the AGL gene (OMIM *610860). It is known to be bifunctional enzyme, that is, having two independent catalytic activities; 1,4-${\alpha}$-D-glucan 4-${\alpha}$-D-glycosyltransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33) that occur at separate active sites on a single polypeptide chain. Most patients with GSD type III usually have symptoms related to decreased glycogenolysis in liver and muscles, such as hepatomegaly, hypoglycemia, failure to thrive, hyperlipidemia, muscle weakness and cardiomyopathy (type IIIa), however some patients show symptoms restricted to liver (type IIIb). GSD type III is diagnosed by enzyme test through liver or muscle biopsy or mutation analysis of the AGL gene. We report the case of GSD type III proven by gene study after liver biopsy, which revealed c.476delA, c.3444_3445insA in exon 6, 27 of AGL gene in Korean patient.

  • PDF

The Effects of CD-product Specificity upon the Enzyme [CGTase] Reaction Condition (효소 [CGTase : Cyclodextrin glucanotransferase]의 반응 조건이 산물 [CD : Cyclodextrin]의 특이성에 미치는 영향)

  • 최희욱;홍순강
    • KSBB Journal
    • /
    • v.19 no.2
    • /
    • pp.164-167
    • /
    • 2004
  • Cyclodextrin glucanotransferase (EC 2.4.1.19, abbreviated as CGTase) is one of the most applied industrial enzymes that produces cyclodextrins from starch and related ${\alpha}$-1,4-glucans by intramolecular transglycosylation reaction upon Ca$\^$2+/ dependent manner. The reaction of CLEC, ${\alpha}$-CGTases from Bacillus macerans with the soluble starch as a substrate reveals that the surfactants (SDS, N-octyl-${\beta}$-D-glucoside) significantly affect not only the overall products of CDs but also their selectivity. The surfactants (SDS, Lubrol PX) trigger the increase of ${\alpha}$-CD production, but Triton x-100 and Tween 80 suppress ${\alpha}$-CD specificity. Organic solvents (dimethyl sulfoxide, formamide, 2-methyl-2,4-pentandiol, and ethylene glycol) also cause changes of total product and product selectivity.

Characteristics of Polysaccharide Isolated from the Fruit Body and Cultured Mycelia of Phellinus linteus IY001 (Phellinus linteus IY001의 자실체와 균사체 배양물로부터 분리한 다당류의 물리화학적 특성 비교)

  • Lee, June-Woo;Baek, Sung-Jin;Bang, Kwang-Woong;Kim, Yong-Seok;Han, Man-Deuk;Ha, Ick-Su
    • The Korean Journal of Mycology
    • /
    • v.27 no.6 s.93
    • /
    • pp.424-429
    • /
    • 1999
  • This study was conducted to investigate the characteristics of polysaccharides isolated from the fruit body and cultured mycelia of Phellinus linteus IY001. All fractions were extracted by hot water, followed by ethanol precipitation (F-THE and M-HE) or ultrafiltration (M-HU) (F-TH, F-THE; fruit body, M-HE, M-HU; cultured mycelia). Among these fractions, F-TH fraction was obtained at the highest yields of 6.83% and yield of F-THE was at the level 2.79%. The carbohydrates of these fractions was found to be a heteroglucan composed of glucose, galactose, mannose, fructose, ribose and xylose by analysis of gas chromatography. The total carbohydrate contents of M-HE and M-HU fractions were 99.2%, and 86.0% respectively. The glucose content of M-HE, M-HU and F-THE ranged from 54 to 84.8% of the total monosaccharide. Amino acid pattern showed that all fractions contained a large amount of aspartic acid, glycine, glutamic acid, alanine. Serine and threonine were found to be involved in the linkage, O-linked type. These fractions, except F. TH, contained polysaccharides with the molecular weights of 12 kD and showed the characteristics of IR absorption for ${\beta}-glucosides$ at $890\;cm^{-1}$.

  • PDF

Cloning and Expression of A Liquefying $\alpha$-Amylase Gene from Bacillus amyloliquefaciens in Bacillus subtilis (Bacillus amyloliquefaciens 액화형 $\alpha$-amylase 유전자의 클로닝 및 Bacillus subtilis에서의 발현)

  • 김사열;송방호;이인구;서정환;홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.479-485
    • /
    • 1986
  • A 5200 basepair DNA fragment containing the Bacillus amyloliquefaciens amyE gene, encoding liquefying $\alpha$-amylase (1,4-$\alpha$-1)-glucan glucanohydrolase, EC 3.2.1.1), has been inserted into BamHI site of the pUB110 and the hybrid plasmid was designated as pSKS3. The pSKS3 was transformed into the Bacillus subtilis KM2l3 as a host which is a saccharifying $\alpha$-amylase deficient mutant of Bacillus subtilis NA64, and the plasmid in the transformed cell was expressed $\alpha$-amylase production and kanamycin resistance. The $\alpha$-amylase production of the transformed cell was reduced to one fifth of that of the donor strain. The Bacillus subtilis KM2l3 tarring pSKS3 indicated that the amyE gene product is a polypeptide which has the same electrophoretic mobility with that of the Bacillus amyloliquefaciens, but different from the saccharifying $\alpha$-amylase of Bacillus subtilis NA64. It means that the amyE gene of pSKS3 originales from the Bacillus amyloliquefaciens.

  • PDF

Purification and Characterization of Branching Specificity of a Novel Extracellular Amylolytic Enzyme from Marine Hyperthermophilic Rhodothermus marinus

  • Yoon, Seong-Ae;Ryu, Soo-In;Lee, Soo-Bok;Moon, Tae-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.457-464
    • /
    • 2008
  • An extracellular enzyme (RMEBE) possessing ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferring activity was purified to homogeneity from Rhodothermus marin us by combination of ammonium sulfate precipitation, Q-Sepharose ion-exchange, and Superdex-200 gel filtration chromatographies, and preparative native polyacrylamide gel electrophoresis. The purified enzyme had an optimum pH of 6.0 and was highly thermostable with a maximal activity at $80^{\circ}C$. Its half-life was determined to be 73.7 and 16.7 min at 80 and $85^{\circ}C$, respectively. The enzyme was also halophilic and highly halotolerant up to about 2M NaCl, with a maximal activity at 0.5M. The substrate specificity of RMEBE suggested that it possesses partial characteristics of both glucan branching enzyme and neopullulanase. RMEBE clearly produced branched glucans from amylose, with partial ${\alpha}-(1{\rightarrow}4)$-hydrolysis of amylose and starch. At the same time, it hydrolyzed pullulan partly to panose, and exhibited ${\alpha}-(1{\rightarrow}4)-(1{\rightarrow}6)$-transferase activity for small maltooligosaccharides, producing disproportionated ${\alpha}-(1{\rightarrow}6)$-branched maltooligosaccharides. The enzyme preferred maltopentaose and maltohexaose to smaller maltooligosaccharides for production of longer branched products. Thus, the results suggest that RMEBE might be applied for production of branched oligosaccharides from small maltodextrins at high temperature or even at high salinity.

Purification, Characterization, and Partial Primary Sequence of a Major-Maltotriose-producing $\alpha$-Amylase, ScAmy43, from Sclerotinia sclerotiorum

  • Ben Abdelmalek-Khedher, Imen;Urdad, Maria Camino;Limam, Ferid;Schmitter, Jean Marie;Marzouki, M. Nejib;Bressollier, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.9
    • /
    • pp.1555-1563
    • /
    • 2008
  • A novel $\alpha$-amylase ($\alpha$-1,4-$\alpha$-D-glucan glucanohydrolase, E.C. 3.2.1.1), ScAmy43, was found in the culture medium of the phytopathogenic fungus Sclerotinia sclerotiorum grown on oats flour. Purified to homogeneity, ScAmy43 appeared as a 43 kDa monomeric enzyme, as estimated by SDS-PAGE and Superdex 75 gel filtration. The MALDI peptide mass fingerprint of ScAmy43 tryptic digest as well as internal sequence analyses indicate that the enzyme has an original primary structure when compared with other fungal a-amylases. However, the sequence of the 12 N-terminal residues is homologous with those of Aspergillus awamori and Aspergillus kawachii amylases, suggesting that the new enzyme belongs to the same GH13 glycosyl hydrolase family. Assayed with soluble starch as substrate, this enzyme displayed optimal activity at pH 4 and $55^{\circ}C$ with an apparent $K_m$ value of 1.66 mg/ml and $V_{max}$ of 0.1${\mu}mol$glucose $min^{-1}$ $ml^{-1}$. ScAmy43 activity was strongly inhibited by $Cu^{2+}$, $Mn^{2+}$, and $Ba^{2+}$, moderately by $Fe^{2+}$, and was only weakly affected by $Ca^{2+}$ addition. However, since EDTA and EGTA did not inhibit ScAmy43 activity, this enzyme is probably not a metalloprotein. DTT and $\beta$-mercaptoethanol strongly increased the enzyme activity. Starting with soluble starch as substrate, the end products were mainly maltotriose, suggesting for this enzyme an endo action.