• Title/Summary/Keyword: ${\alpha}$-amylase activity

Search Result 563, Processing Time 0.031 seconds

Physicochemical Properties and Biological Activities of Protaetia brevitarsis seulensis Larvae Fermented by Several Kinds of Micro-organisms (유용 미생물을 이용한 발효굼벵이 추출물의 이화학적 특성 및 생리활성효과)

  • Sim, So-Yeon;Ahn, Hee-Young;Seo, Kwon-Il;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.827-834
    • /
    • 2018
  • In this study, the biological activities of aqueous, ethanol, and methanol extracts of larvae of the edible insect Protaetia brevitarsis seulensis, fermented using several kinds of microorganisms, were tested in in vitro experimental models. Six effective microorganisms were used for fermentation, namely Lactobacillus plantarum JBMI F3, Lactobacillus plantarum JBMI F5, Lactobacillus gasseri Ba9, Aspergillus kawachii KCCM 32819, Saccharomyces cerevisiae KACC 93023, and Bacillus subtilis KACC 91157. Biological activities (${\alpha},{\alpha}^{\prime}-diphenyl-{\beta}-picrylhydrazyl$ [DPPH] free radical scavenging activity, reducing power, and fibrinolytic activity), and biochemical properties (phenolic compounds and flavonoids) were examined in aqueous, ethanol, and methanol extracts from P. brevitarsis seulensis powder and fermented P. brevitarsis seulensis powder. The total phenolic compounds and flavonoid contents were highest in the aqueous extract of B. subtilis-fermented P. brevitarsis seulensis powder. DPPH radical scavenging activity and reducing power were stronger in the fermented group than the nonfermented group. Fibrinolytic activity were highest in the extract from B. subtilis-fermented P. brevitarsis seulensis powder. The ${\alpha}-amylase$ activity in starch was higher in the fermented group than the nonfermented group, but there was no significant difference. These results provide basic data to understand the biological activities of bioactive materials derived from fermented P. brevitarsis seulensis larvae for the development of functional foods.

Antioxidant and Antiobesity Activity of Natural Color Resources (천연색소 소재의 항산화 및 항비만 활성)

  • Hwang, Cho-Rong;Tak, Hyun-Min;Kang, Min-Jung;Suh, Hwa-Jin;Kwon, Oh-Oun;Shin, Jung-Hye
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.633-641
    • /
    • 2014
  • This study investigated the antioxidant and antiobesity activity of extract powders from the following natural color resources: Polygonum indigo, Black locust, Cochineal, Catechu, Grape, Tesu flower, Henna, Chrysanthemum, Sandalwood Red, Himalayan Rhubarb, and Madder. Total phenol content was the highest in Catechu extract, at 348.25 mg/g. DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) were also higher in Catechu extract. Bleaching inhibition activity in the ${\beta}$-carotene linoleic acid system was the highest in Black locust extract, as was ${\alpha}$-Glucosidase inhibition activity. ${\alpha}$-Amylase inhibition activity was the highest in Catechu extract. Trypsin inhibition activity of Black locust extract was greater than 60%, and ${\alpha}$- chymotrypsin inhibition activity of Catechu extract was greater than 40%. Lipase inhibition activity was the highest Black locust extract, at 52.73%. Viability of 3T3-L1 cells was not affected by treatment with extracts at concentrations of $1.25{\sim}25{\mu}g/ml$. Lipid accumulation in the 3T3-L1 cells was the lowest following treatment with Catechu extract, at 55.8%, and this extract also inhibited adipocyte differentiation. These results suggest that the Catechu and Black locust extracts have high antioxidant and antiobesity activities and can be useful ingredients in functional foods.

Chemical composition and Stabilities of Invertase from Korean Ginseng, Panax ginseng (고려인삼(Panax RiwenR) Invertase의 화학조성과 안정성)

  • 김용환;김병묵
    • Journal of Ginseng Research
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 1990
  • The chemical composition and stabilities of the purified ginseng invertase were investigated. The purified enzyme was found to be a glycoprotein composed of 80.2% protein and 19.7% total sugar. The protein component of the enzyme was composed of acidic amino acid (9.3%), basic amino acid (48.9%), nonpolar amino acid (21.4%), polar amino acid (20.4%) and 6.1% S-containing amino acid. It showed especially high contents of histidine and serine. The enzyme was inactivated almost completely by the treatment with some proteases (papain, pepsin. trypsin, pancreatin and microbial alkaline pretense) and protein denatllrants (8M urea and 6M guanidine-HC1), bolt not with glyrosidase (${\alpha}$-amylase, ${\beta}$-amylase. glcoamylese and cellullase). btonosaccharides sllch as glilrose, fructose, galactose and mannose did not exert any influence on the enzyme activity. The activity of the enzyme was inhibited by Ag+, Mn2+, Hg2+, Zn2+ and Al3+, whereas Ca2+, Mg2+, Ba2+ and Fe3+ gave rather activating effects on the enzyme activity. The enzyme was relatively stable in the VH range of VH 6 and 8, and at the temperatures below 35$^{\circ}C$.

  • PDF

Nucleotide Sequence, Structural Investigation and Homology Modeling Studies of a Ca2+-independent α-amylase with Acidic pH-profile

  • Sajedi, Reza Hassan;Taghdir, Majid;Naderi-Manesh, Hossein;Khajeh, Khosro;Ranjbar, Bijan
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.315-324
    • /
    • 2007
  • The novel $\alpha$-amylase purified from locally isolated strain, Bacillus sp. KR-8104, (KRA) (Enzyme Microb Technol; 2005; 36: 666-671) is active in a wide range of pH. The enzyme maximum activity is at pH 4.0 and it retains 90% of activity at pH 3.5. The irreversible thermoinactivation patterns of KRA and the enzyme activity are not changed in the presence and absence of $Ca^{2+}$ and EDTA. Therefore, KRA acts as a $Ca^{2+}$-independent enzyme. Based on circular dichroism (CD) data from thermal unfolding of the enzyme recorded at 222 nm, addition of $Ca^{2+}$ and EDTA similar to its irreversible thermoinactivation, does not influence the thermal denaturation of the enzyme and its Tm. The amino acid sequence of KRA was obtained from the nucleotide sequencing of PCR products of encoding gene. The deduced amino acid sequence of the enzyme revealed a very high sequence homology to Bacillus amyloliquefaciens (BAA) (85% identity, 90% similarity) and Bacillus licheniformis $\alpha$-amylases (BLA) (81% identity, 88% similarity). To elucidate and understand these characteristics of the $\alpha$-amylase, a model of 3D structure of KRA was constructed using the crystal structure of the mutant of BLA as the platform and refined with a molecular dynamics (MD) simulation program. Interestingly enough, there is only one amino acid substitution for KRA in comparison with BLA and BAA in the region involved in the calcium-binding sites. On the other hand, there are many amino acid differences between BLA and KRA at the interface of A and B domains and around the metal triad and active site area. These alterations could have a role in stabilizing the native structure of the loop in the active site cleft and maintenance and stabilization of the putative metal triad-binding site. The amino acid differences at the active site cleft and around the catalytic residues might affect their pKa values and consequently shift its pH profile. In addition, the intrinsic fluorescence intensity of the enzyme at 350 nm does not show considerable change at pH 3.5-7.0.

Characterization of Starch-Utilizing Yeast Saccharomycopsis fibuligera Isolated from Nuruk (누룩으로부터 분리된 전분대사 효모 Saccharomycopsis fibuligera 균주의 생육특성)

  • Choi, Da-Hye;Park, Eun-Hee;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.407-412
    • /
    • 2014
  • A number of Saccharomycopsis fibuligera strains that can hydrolyse and utilize starch as a carbon source were isolated from nuruk, a traditional Korean starter for rice wine fermentation, and their specific growth rates on starch-containing medium were compared to choose the prominent strain. S. fibuligera strain MBY1320 showed a higher growth rate at $42^{\circ}C$ than that of strain S. fibuligera KCTC7806, indicating that S. fibuligera MBY1320 has more thermo-tolerant machinery for starch hydrolysis and utilization than KCTC7806. Although the activity of ${\alpha}$-amylase at $30^{\circ}C$ was significantly lower for S. fibuligera MBY1320 than KCTC7806 (3,812.5 U vs. 14,878.5 U), S. fibuligera MBY1320 showed a much higher glucoamylase activity at $42^{\circ}C$ than S. fibuligera KCTC7806 (5,048.9 U vs. 13,152.3 U). Thus, a new S. fibuligera strain, with a higher starch-hydrolysing activity at elevated temperatures than that of other types of strain, this study reports.

Screening and Characterization of Secretion Signals from Lactococcus lactis ssp. cremoris LM0230

  • Jeong, Do-Won;Choi, Youn-Chul;Lee, Jung-Min;Seo, Jung-Min;Kim, Jeong-Hwan;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1052-1056
    • /
    • 2004
  • A secretion signal sequence-selection vector (pGS40) was constructed based on an $\alpha$-amylase gene lacking a secretion signal and employed for selecting secretion signals from Lactococcus lactis ssp. cremoris LM0230 chromosomal DNA. Six fragments were identified based on their ability to restore $\alpha$-amylase secretion in E. coli, and among these, a fragment, S405, conferred the highest secretion activity (84%) in E. coli. Meanwhile, S407, which conferred poor secretion activity in E. coli, was quite active in L. lactis. The results suggested that the efficiency of a secretion signal depended on the host. All six fragments had an open reading frame (ORF) fused to the reporter gene, and the potential Shine-Dalgamo (SD) sequence and putative promoter sequences were located upstream of the ORF. Deduced amino acid sequences from the six fragments did not show any homology with known secretion signals. However, they contained three distinguished structural features and cleavage sites, commonly found among typical secretion signals. The characterized secretion signals could be useful for the construction of food-grade secretion vectors and gene expression in LAB.

Cloning of Bacillus amyloliquefaciens amylase gene using YRp7 as a vector II. Expression of cloned amylase gene in Saccharomyces cerevisiae (YRp7 vector를 이용한 Bacillus amyloliquefaciens amylase gene의 cloning I I. Saccharomyces cerevisiae에서 발현)

  • 서정훈;김영호;전도연;배영석;홍순덕;이종태
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.213-218
    • /
    • 1986
  • Hybrid plasmid pEA24, shuttle vector YRp7 carrying amylase gene of Bacillus amyloliquefaciens, was transformed to yeast Saccharomyces cerevisiae, and the expression of B. amyloliquefaciens amylase gene in yeast was investigated. The frequency of transformation to S. cerevisiae DBY747 with YRp7 was increased by treatment of 40% polyethylene glycol (MW 4, 000), PH 7.0, at 3$0^{\circ}C$, and by regeneration used 2% top agar. The amount of cellular amylase activity produced by S. cerevisiae containing pEA24 was 2% of that secreted from B. amyloliquefaciens, but in case of S. cerevisiae transformant, the amylase secreted was not detected. A comparison of genetic stability of pEA24 and YRp7 plasmids in yeast was carried out by cultivation of transformants in tryptophan-supplement-medium. The pEA24 plasmid was more unstable than YRp7 in S. cerevisiae. The size of pEA24 extracted from S. cerevisiae transformants was found to be identical with that from E. coli transformants by agarose gel electrophoresis.

  • PDF

Antioxidative and Antidiabetic Activities of Methanol Extracts from Different Parts of Jerusalem Artichoke (Helianthus tuberosus L.) (돼지감자 부위별 메탄올 추출물의 항산화 및 항당뇨 활성)

  • Lee, Chang Hun;Lee, Youn Ri
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.1
    • /
    • pp.128-133
    • /
    • 2016
  • This study aimed to evaluate the efficacy of the antioxidative and antidiabetic activities of the flowers, leaves, and roots of the Jerusalem artichoke (Helianthus tuberosus L.). The total polyphenol and flavonoid contents of the leaves were higher than those of the flowers and roots. However, the DPPH radical-scavenging and hydroxyl radical-scavenging activities of the flowers were higher than those of the leaves and roots. The nitrite-scavenging ability under acidic conditions was high in Jerusalem artichoke flower extracts. The ${\alpha}-glucosidase$ inhibitory activity and ${\alpha}-amylase$ inhibitory activity of a methanol extract of Jerusalem artichoke roots were about 60% (5 mg/mL concentration). Based on these experiments, it can be concluded that the flowers leaves, and roots of the Jerusalem artichoke can be used as natural preservatives. Therefore, they can be developed as functional foods, to take advantage of their antioxidant activity and abundant polyphenols. This study suggests that the whole Jerusalem artichoke, including roots, leaves, and flowers, is useful as a functional, nutritious food product.

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Production of Amylase by a Thermophi1ic Fungus, Mucor Sp. (고온성(高溫性) 사상균(絲狀菌) Mucor Sp.에 의(依)한 Amylase의 생산(生産))

  • Lee, Sang Ho;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.153-163
    • /
    • 1988
  • This experiment was carried out to obtain the thermophilic fungus producing amylase and to investigate properties of the amylase. The selected strain, L-11 was obtained from soil in the vicinity of a hot spring and identified as Mocor sp.. And then the conditions for enzyme production in wheat bran cultures and properties of the crude enzyme were investigated. Furthermore, the enzyme was purified and the characteristics of purified enzyme were studied. The results obtained were as follows: 1. On the wheat bran medium added 80-100% water, amylase was effectively produced by the selected strain, L-11 for 48 hrs incubation at $50^{\circ}C$. 2. When the crude enzyme solution of the strain L-11 was passed through DEAE-Sephadex A-50 column chromatography, two peaks having amylase activity were obtained, and one peak was that of the main enzyme (enzyme of B peak). 3. The purified enzyme (enzyme of B peak) was recognized as single protein band on polyacrylamide disc gel electrophoresis. 4. In the hydrolysis reaction of soluble starch by the enzyme of main amylase, oligosaccharides produced at early stage were maltose and maltotriose mainly and procedure of the reaction maltose amount of maltose and glucose was increased. 5. The strain L-11 was recognized as a special strain producing ${\alpha}-amylase$ mainly and scarcely glucoamylase. 6. The optimum pH, optimum temperature, pH stability, and temperature stability of ${\alpha}-amylase$ were pH 4.0, $60-65^{\circ}C$, pH 4.0-9.0, and below$70^{\circ}C$.

  • PDF