• Title/Summary/Keyword: ${\alpha}$-STAT

Search Result 67, Processing Time 0.021 seconds

Comparative Analysis of $\alpha$-STAT and pH-STAT Strategies During Deep Hypothermic Circulatory Arrest in the Young Pig (초저체온 순환정지시 $\alpha$-STAT와 pH-STAT 조절법의 비교분석 -어린돼지를 이용한 실험모델에서-)

  • Kim, Won-Gon;Lim, Cheong;Moon, Hyun-Jong;Won, Tae-Hee;Kim, Yong-Jin
    • Journal of Chest Surgery
    • /
    • v.31 no.6
    • /
    • pp.553-559
    • /
    • 1998
  • Introduction: The most dramatic application of hypothermia in cardiac surgery is in deep hypothermic circulatory arrest(DHCA). Because man in natural circumstances is never exposed to this extreme hypothermic condition, one of the controversial aspects of clinical hypothermia is appropriate acid-base management($\alpha$-stat versus pH-stat). This study aims to compare $\alpha$-stat with pH-stat for: (1) brain cooling and re-warming speed during hypothermia induction and re-warming by cardiopulmonary bypass (CPB); (2) cerebral perfusion, metabolism, and their coupling; and (3) the extent of development of cerebral edema after circulatory arrest, in young pigs. Materials & Methods: Fourteen young pigs were assigned to one of two strategies of gas manipulation. Cerebral blood flow was measured with a cerebral venous outflow technique. After a median sternotomy, CPB was established. Core cooling was initiated and continued until nasopHaryngeal temperature fell below $20^{\circ}C$. The flow rate was set at 2,500 ml/min. Once their temperatures were below $20^{\circ}C$, the animals were subjected to DHCA for 40 mins. During cooling, acid-base balance was maintained according to either $\alpha$-STAT or pH-STAT strategies. After DHCA, the body was re-warmed to normal body temperature. The animals were then sacrificed, and their brains measured for edema. Cerebral perfusion and metabolism were measured before the onset of CPB, before cooling, before DHCA, 15 mins after re-warming, and upon completion of re-warming. Results & Conclusion: Cooling time was significantly shorter with $\alpha$-stat than with pH-stat strategy, while there were no significant differences in rewarming time between the two groups. Nosignificant differences were found in cerebral blood flow, metabolic rate, or flow/ metabolic rate ratio between two groups. Temperature-related differences were significant in cerebral blood flow, metabolic rate, and flow/metabolic rate ratio within each group. Brain water content showed no significant differences between two groups.

  • PDF

Anti-angiogenic Effect of Cryptotanshinone through Inhibition of HIF-1alpha and STAT3 in Prostate Cancer Cells (단삼 유래 단일 물질 cryptotanshione의 전립선 암주에서의 HIF-1alpha와 STAT3 억제를 통한 신생혈관억제효과)

  • Lee, Hyo-Jeong;Hong, Sang-Hyuk;Kim, Sung-Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.437-440
    • /
    • 2012
  • Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that regulates various cellular processes such as cell survival, angiogenesis and proliferation. In the present study, we examined that Cryptotanshione(CT), a tanshinone from oriental traditional medicinal herb Danshen (Salvia miltiorrhiza Bunge), had the inhibitory effects on hypoxia-mediated activation of STAT3 in androgen independent human prostate cancer PC-3 cells. CT inhibited the protein expression of hypoxia-inducible factor-1alpha (HIF-$1{\alpha}$) under hypoxic condition. Consistently, CT blocked hypoxia-induced phosphorylation and nuclear accumulation of STAT3. In addition, CT reduced cellular of vascular endothelial growth factor (VEGF), a critical angiogenic factor and a target gene of STAT3 induced under hypoxia. Of note, chromatin immunoprecipitation (ChiP) assay revealed that CT inhibited binding of STAT3 to VEGF promoter. Taken together, our results suggest that CT has anti-angiogenic activity by disturbing the binding STAT3 to the VEGF promoter in PC-3 cells.

Blood Gas Management of a Membrane Oxygenator During Cardiac Surgery with Deep Hypothermic Circulatory Arrest (막형산화기에 의한 저체온 순환정지 심장수술시 혈액가스 조절)

  • Kim, W. G.;Lim, C.;Baek, Y. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.279-284
    • /
    • 1998
  • Deep hypothermic circulatory arrest(DHCA), in which systemic temperatures of 2$0^{\circ}C$ or less are used to allow temporary cessation of the circulation, is an useful adjunct in cardiac surgery. Because man in natural circumstances is never exposed to the extreme hypothermic condition, however, one of the controversial aspects is appropriate blood gas management($\alpha$STAT versus PH-STAT) during DHCA. This study aims to compare $\alpha$STAT with PH-STAT management for control of blood gases in experimental cardiopulmonary bypass(CPB) circuits with a membrane oxygenator. Fourteen young pigs were assigned to one of two strategies of gas manipulation. After a median sternotomy, CPB was established. Core cooling was initiated and continued until nasopharyngeal temperature fell below 2$0^{\circ}C$. The flow rate was set at 2,500 ml/min. Once their temperatures were below 2$0^{\circ}C$, the animals were subjected to circulatory arrest for 40mins. During cooling, blood gas was maintained according to either $\alpha$$\alpha$STAT or pH-STAT strategies. After DHCA, the body was rewarmed to normal body temperature. Arterial blood gases were measured before the onset of CPB, before cooling, before DHCA, at the point of 27$^{\circ}C$ during re-warming, on completion of re-warming. Cooling time was significantly shorter in $\alpha$-STAT than PH-STAT strategy, while there was no significant differences in rewarming time between two groups. Carbon dioxide was added between 5.5 and 3.0% in PH-STAT, while no carbon dioxide was added in $\alpha$STAT management. Amounts of oxygen administration were gradually lowered as temperature decreased. In this way, criteria of PH, PaCO, and PaO adjustments were satisfied in both $\alpha$STAT and PH-STAT management groups.

  • PDF

Analysis of the Apoptotic Mechanisms of Snake Venom Toxin on Inflammation-induced HaCaT Cell-line

  • Chun, Youl Woong;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.34 no.1
    • /
    • pp.23-30
    • /
    • 2017
  • Objectives : In this study, the roles of Interleukin (IL)-4 and Signal transducer and activator of transcription 6 (STAT6), which have been reported to play a role in the pathogenesis of inflammation and cancer, were evaluated in snake venom toxin (SVT)-induced apoptosis. Methods : Inflammation was induced in human HaCaT kerationocytes, by lipopolysaccharide (LPS; $1{\mu}g/mL$) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), followed by treatment with SVT (0, 1, or $2{\mu}g/mL$). Cell viability was assessed by MTT assays after 24 h, and the expression of levels of IL-4, STAT6, and the apoptosis-related proteins p53, Bax, and Bcl-2 were evaluated by western blotting. Electro mobility shift assays (EMSAs) were performed to evaluate the DNA binding capacity of STAT6. Results : MTT assays showed that inflammation-induced growth of HaCaT cells following LPS or TNF-${\alpha}$ stimulation was inhibited by SVT. Western blot analysis showed that p53 and Bax, which promote apoptosis, were increased, whereas that of Bcl-2, an anti-apoptotic protein, was decreased in a concentration-dependent manner in LPS- or TNF-${\alpha}$-induced HaCaT cells following treatment with SVT. Moreover, following treatment of HaCaT cells with LPS, IL-4 concentrations were increased, and treatment with SVT further increased IL-4 expression in a concentration-dependent manner. Western blotting and EMSAs showed that the phosphorylated form of STAT6 was increased in HaCaT cells in the context of LPS- or TNF-${\alpha}$-induced inflammation in a concentration-dependent manner, concomitant with an increase in the DNA binding activity of STAT6. Conclusion : SVT can effectively promote apoptosis in HaCaT cells in the presence of inflammation through a pathway involving IL-4 and STAT6.

Delphinidin Suppresses Angiogenesis via the Inhibition of HIF-1α and STAT3 Expressions in PC3M Cells (전립선 암세포에서 delphinidin에 의한 HIF-1α와 STAT3 억제를 통한 혈관내피 성장 인자 발현 저해 효과)

  • Kim, Mun-Hyeon;Kim, Mi-Hyun;Park, Young-Ja;Chang, Young-Chae;Park, Yoon-Yub;Song, Hyun-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.66-71
    • /
    • 2016
  • Delphinidin is a blue-red pigment and one of the major anthocyanins in plants. It plays an important role in anti-oxidant, anti-inflammatory, anti-mutagenic and anti-cancer properties. In this study, we investigated the inhibitory effects of delphinidin on vascular endothelial growth factor (VEGF) gene expression, an important factor involved in angiogenesis and tumor progression in human prostate cancer. Delphinidin decreased levels of epidermal growth factor (EGF)-induced VEGF mRNA expression in PC-3M cells. The expression of the EGF-induced hypoxia inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) and signaling transducer and activator of transcription 3 (STAT3) proteins, which are the major transcription factors for VEGF, were inhibited by delphinidin. In addition, delphinidin decreases HRE-promoter reporter gene activity, suggesting that delphinidin can suppress the transcription of HIF-$1{\alpha}$ under EGF induction, leading to a decrease in the expression of VEGF. Delphinidin specifically suppressed the phosphorylation of Akt, p70S6K, and 4EBP1, but not the phosphorylation of EGFR. Therefore, our results suggest that delphinidin may inhibit human prostate cancer progression and angiogenesis by inhibiting HIF-$1{\alpha}$, STAT3 and VEGF gene expression.

The Effects of Injinchunggantang on Interferon Signaling Pathway of HepG2 Cells (인진청간탕(茵蔯淸肝湯)이 HepG2 cell의 인터페론 신호전달계에 미치는 영향)

  • Yi, Jong-Hoon;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.74-92
    • /
    • 2005
  • Objectives/Methods : To analyze the effect of Injinchunggantang(IJCGT) to Interferon-${\alpha}/{\beta}$ signal transmission system in HepG2 cells, HepG2 Cell were treated with IJCGT. Also, revelation of MxA, 2'5'-OAS mRNA leaded by Interferon-${\alpha}/{\beta}$ and revelation and activation of Jak1, TYK1, and STAT 1, all main signal transmission factors, were analyzed. Results : The analysis resulted in the following 1. With interferon ${\alpha}/{\beta}$ there was no affect cell propagation of Hep G2 cells. With IJCGT alone, cell propagation of HepG2 was promoted, and cell propagation control function was recovered. 2. With interferon ${\alpha}/{\beta}$ cell death was unaffected. With IJCGT apoptosis of HepG2 cell was restrained, and the cell's reaction to interferon was unaffected. 3. With interferon ${\alpha}/{\beta}$ treatment mRNA revelation of MxA and 2'5'-OAS was induced. When HepG2 cells were injected with IJCGT without interferon ${\alpha}/{\beta}$ treatment, mRNA revelation of MxA and 2'5'-OAS increased in proportion to the treatment density. With pre-treatment of IJCGT, leaded with interferon ${\alpha}/{\beta}$, promoted revelation of MxA, 2'5' -OAS mRNA. 4. Though mRNA revelation of lakl, TYK1 and STAT1 was unaffected with IJCGT, activation of STAT1 was promoted with an increase of phosphorylation of STAT1 protein. With pre-treatment of IJCGT, Jak1, TYK2, STAT1 phosphorylation, leaded with interferon, strengthened. 5. TNF-a, IL-1b and LPS present, revelation of MxA and 2'5'-OAS mRNA leaded by interferon was restrained when HepG2 cells were treated with IJCGT, and the interferon signal transmission system restraint action leaded by inflammatory cytokines was moderated. Conclusion : These results support a role for IJGCT in promotion of anti-virus action through maintainance of the liver's sensibility toward interferon. A clinical study of an interferon treated patient treated also with IJGCT is needed to determine its efficacy.

  • PDF

Eupatilin Inhibits Gastric Cancer Cell Growth by Blocking STAT3-Mediated VEGF Expression

  • Cheong, Jae-Ho;Hong, Sung-Yi;Zheng, Yanjun;Noh, Sung-Hoon
    • Journal of Gastric Cancer
    • /
    • v.11 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • Purpose: Eupatilin is an antioxidative flavone and a phytopharmaceutical derived from Artemisia asiatica. It has been reported to possess anti-tumor activity in some types of cancer including gastric cancer. Eupatilin may modulate the angiogenesis pathway which is part of anti-inflammatory effect demonstrated in gastric mucosal injury models. Here we investigated the anti-tumor effects of eupatilin on gastric cancer cells and elucidated the potential underlying mechanism whereby eupatilin suppresses angiogenesis and tumor growth. Materials and Methods: The impact of eupatilin on the expression of angiogenesis pathway proteins was assessed using western blots in MKN45 cells. Using a chromatin immunoprecipitation assay, we tested whether eupatilin affects the recruitment of signal transducer and activator of transcription 3 (STAT3), aryl hydrocarbon receptor nuclear translocator (ARNT) and hypoxia-inducible factor-$1{\alpha}$ (HIF-$1{\alpha}$) to the human VEGF promoter. To investigate the effect of eupatilin on vasculogenesis, tube formation assays were conducted using human umbilical vein endothelial cells (HUVECs). The effect of eupatilin on tumor suppression in mouse xenografts was assessed. Results: Eupatilin significantly reduced VEGF, ARNT and STAT3 expression prominently under hypoxic conditions. The recruitment of STAT3, ARNT and HIF-$1{\alpha}$ to the VEGF promoter was inhibited by eupatilin treatment. HUVECs produced much foreshortened and severely broken tubes with eupatilin treatment. In addition, eupatilin effectively reduced tumor growth in a mouse xenograft model. Conclusions: Our results indicate that eupatilin inhibits angiogenesis in gastric cancer cells by blocking STAT3 and VEGF expression, suggesting its therapeutic potential in the treatment of gastric cancer.

Nuclear Receptor PPARα Agonist Wy-14,643 Ameliorates Hepatic Cell Death in Hepatic IKKβ-Deficient Mice

  • Kim, Taehyeong;Wahyudi, Lilik Duwi;Gonzalez, Frank J.;Kim, Jung-Hwan
    • Biomolecules & Therapeutics
    • /
    • v.25 no.5
    • /
    • pp.504-510
    • /
    • 2017
  • Inhibitor of nuclear factor kappa-B kinase beta ($IKK{\beta}$) plays a critical role in cell proliferation and inflammation in various cells by activating $NF-{\kappa}B$ signaling. However, the interrelationship between peroxisome proliferator-activated receptor ${\alpha}$ ($PPAR{\alpha}$) and $IKK{\beta}$ in cell proliferation is not clear. In this study, we investigated the possible role of $PPAR{\alpha}$ in the hepatic cell death in the absence of $IKK{\beta}$ gene using liver-specific Ikkb-null ($Ikkb^{F/F-AlbCre}$) mice. To examine the function of $PPAR{\alpha}$ activation in hepatic cell death, wild-type ($Ikkb^{F/F}$) and $Ikkb^{F/F-AlbCre}$ mice were treated with $PPAR{\alpha}$ agonist Wy-14,643 (0.1% w/w chow diet) for two weeks. As a result of Wy-14,643 treatment, apoptotic markers including caspase-3 cleavage, poly (ADP-ribose) polymerase (PARP) cleavage and TUNEL-positive staining were significantly decreased in the $Ikkb^{F/F-AlbCre}$ mice. Surprisingly, Wy-14,643 increased the phosphorylation of p65 and STAT3 in both Ikkb and $Ikkb^{F/F-AlbCre}$ mice. Furthermore, BrdU-positive cells were significantly increased in both groups after treatment with Wy-14,643. Our results suggested that $IKK{\beta}-derived$ hepatic apoptosis could be altered by $PPAR{\alpha}$ activation in conjunction with activation of $NF-{\kappa}B$ and STAT3 signaling.

Multiple Cytotoxic Factors Involved in IL-21 Enhanced Antitumor Function of CIK Cells Signaled through STAT-3 and STAT5b Pathways

  • Rajbhandary, S.;Zhao, Ming-Feng;Zhao, Nan;Lu, Wen-Yi;Zhu, Hai-Bo;Xiao, Xia;Deng, Qi;Li, Yu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5825-5831
    • /
    • 2013
  • Background/Objectives: Maintenance of cellular function in culture is vital for transfer and development following adoptive immunotherapy. Dual properties of IL-21 in activating T cells and reducing activation induced cell death led us to explore the mechanism of action of IL-21 enhanced proliferation and cytotoxic potential of CIK cells. Method: CIK cells cultured from PBMCs of healthy subjects were stimulated with IL-21 and cellular viability and cytotoxicity to K562 cells were measured. To elucidate the mechanism of action of IL-21, mRNA expression of cytotoxic factors was assessed by RT-PCR and protein expression of significantly important cytotoxic factors and cytokine secretion were determined through flow cytometry and ELISA. Western blotting was performed to check the involvement of the JAK/STAT pathway following stimulation. Results: We found that IL-21 did not enhance in vitro proliferation of CIK cells, but did increase the number of cells expressing the CD3+/CD56+ phenotype. Cytotoxic potential was increased with corresponding increase in perforin ($0.9831{\pm}0.1265$ to $0.7592{\pm}0.1457$), granzyme B ($0.4084{\pm}0.1589$ to $0.7319{\pm}0.1639$) and FasL ($0.4015{\pm}0.2842$ to $0.7381{\pm}0.2568$). Interferon gamma and TNF-alpha were noted to increase ($25.8{\pm}6.1ng/L$ to $56.0{\pm}2.3ng/L$; and $5.64{\pm}0.61{\mu}g/L$ to $15.14{\pm}0.93{\mu}g/L$, respectively) while no significant differences were observed in the expression of granzyme A, TNF-alpha and NKG2D, and NKG2D. We further affirmed that IL-21 signals through the STAT-3 and STAT-5b signaling pathway in the CIK cell pool. Conclusion: IL-21 enhances cytotoxic potential of CIK cells through increasing expression of perforin, granzyme B, IFN-gamma and TNF-alpha. The effect is brought about by the activation of STAT-3 and STAT-5b proteins.

p38 mitogen-activated protein kinase contributes to TNFα-induced endothelial tube formation of bone-marrow-derived mesenchymal stem cells by activating the JAK/STAT/TIE2 signaling axis

  • Sukjin Ou;Tae Yoon Kim;Euitaek Jung;Soon Young Shin
    • BMB Reports
    • /
    • v.57 no.5
    • /
    • pp.238-243
    • /
    • 2024
  • Bone marrow-derived mesenchymal stem cells (BM-MSCs) can differentiate into endothelial cells in an inflammatory microenvironment. However, the regulatory mechanisms underlying this process are not entirely understood. Here, we found that TIE2 in BM-MSCs was upregulated at the transcriptional level after stimulation with tumor necrosis factor-alpha (TNFα), a major pro-inflammatory cytokine. Additionally, the STAT-binding sequence within the proximal region of TIE2 was necessary for TNFα-induced TIE2 promoter activation. TIE2 and STAT3 knockdown reduced TNFα-induced endothelial tube formation in BM-MSCs. Among the major TNFα-activated MAP kinases (ERK1/2, JNK1/2, and p38 MAPK) in BM-MSCs, only inhibition of the p38 kinase abrogated TNFα-induced TIE2 upregulation by inhibiting the JAK-STAT signaling pathway. These findings suggest that p38 MAP contributes to the endothelial differentiation of BM-MSCs by activating the JAK-STAT-TIE2 signaling axis in the inflammatory microenvironment.