• Title/Summary/Keyword: $^1H$ and $^{13}C$ NMR

Search Result 1,029, Processing Time 0.032 seconds

$^{13}C$ NMR Analysis for the Characterization of Heme Electronic/Molecular Structure in Horse Myoglobin Cyanide (Myoglobin 시안 단백질에 포함된 Heme에 대한 전자 및 분자구조 규명을 위한 $^{13}C$ NMR분석)

  • Lee, Kang-Bong;Kweon, Jee-Hye;Lee, Ho-Jin;Kim, Young-Man;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 1998
  • The reverse detection heteronuclear multiple quantum coherence, HMQC study of metcyano complex of horse myoglobin(MbCN) has provided the complete assignment of hyperfine shifted resonances of heme carbons attached with proton(s). The application of HMQC experiment to the paramagnetic low-spin MbCN gives clear $^1H$ and $^{13}C$ coherences for the paramagnetic amino acid residues as well as heme side chains, and can be extended to the low-spin paramagnetic hemoprotein derivative for the assignment of natural abundance $^{13}C$ resonances. This assignment strategy can avoid possible ambiguities that may result from the sole utilization of $^1H$ nuclear Overhauser effect for the assignment of heme $^1H$ signals resonating in the diamagnetic region. The resulting 2,4-vinyl ${\alpha}$-carbons and 7-propionate ${\beta}$-carbon follow anomalous anti-Curie behavior, and are indicative of incoplanarity with heme plane. Magnetic/electronic asymmetry of heme induced by proximal histidine(His) makes spread that the hyperfine shifted heme carbon resonances over the range of 250 ppm at $25^{\circ}C$. These heme carbon resonances would be the much more sensitive probe than those of proton resonances in analyzing the nature of heme electronic structure of myoglobin.

  • PDF

Isolation and characterization of bacilysin against Ralstonia solanacearum from Bacillus subtilis JW-1 (Bacillus subtilis JW-1 균주가 생산하는 bacilysin의 풋마름병 억제 효과 및 특성)

  • Kim, Shin-Duk
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.136-139
    • /
    • 2018
  • The inhibitory compound (Compound S) against Ralstonia solanacearum and its conversion product (Compound S') were isolated from the culture filtrate of Bacillus subtilis JW-1 using a series of chromatography procedures. The structures were elucidated as alanyl-L-${\beta}$-(2,3-epoxycyclohexyl-4-one)alanine and alanyl-L-${\beta}$-(2,3-dihydroxycyclohexyl-4-one)alanine, respectively on the basis of nuclear magnetic resonance spectral data, including $^1H$, $^{13}C$, $^1H-^1H$ correlation spectroscopy and heteronuclear multiple bond correlation spectroscopy. The compound S exhibited a broad antimicrobial activity against $G^+$, $G^-$ bacteria, Saccharomyces cerevisiae and Candida albicans. The activity loss of the conversion product revealed that the epoxy function was essential for activity of Compound S.

DPPH Radical Scavenging Activity of Phenolic Compounds Isolated from the Stem Wood of Acer tegmentosum (산겨릅나무 목질부에서 분리한 페놀성 화합물의 DPPH 라디칼 소거활성)

  • Kwon, Dong-Joo;Kim, Jin-Kyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.104-112
    • /
    • 2011
  • There have been few reports on the constituents and biological activity of stem bark of $Acer$ $tegmentosum$, and no phytochemical and biological studies have been reported for stem wood of $A.$ $tegmentosum$. Two flavan 3-ols (1 and 2), three phenolic acid/alcohols (3~5), and two coumarins (6 and 7) were isolated from the stem wood of $A.$ $tegmentosum$ by repeated column chromatography. The structure of isolated compounds were identified as (+)-catechin (1), (-)-epicatechin (2), $p$-hydroxybenzaldehyde (3), syringic alcohol (4), $p$-tyrosol (5), scopoletin (6), and cleomiscosin A (7) on the basis of spectroscopic evidences such as $^1H$-NMR, $^{13}C$-NMR, 2D-NMR and MS spectrum. $p$-Hydroxybenzaldehyde (3), syringic alcohol (4), scopoletin (6), and cleomiscosin A (7) have not been reported from this plant so far. (+)-Catechin (1) and (-)-epicatechin (2) showed the higher 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than butylated hydroxyanisole (BHA) used as a positive control.

Recovery of MFB Generated from Dimethyl Terephtalate Production Process (DMT 제조 과정서 발생하는 MFB의 회수에 관한 연구)

  • Kim, Sun Ho;Ryu, Young;Kim, Jong Cheon;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.621-623
    • /
    • 2015
  • This article describes a purification method yielding high purity of MFB produced from DMT production process. Aldehyde functional group of MFB included in side-products were converted to acetal compound via reacting with methanol and further separated. Hydrolysis process of the acetal product was continued under acidic condition and highly pure MFB were obtained with 90% yield. The structure of MFB was analyzed by $^1H$ NMR and $^{13}C$ NMR spectroscopy. Also, the purity of MFB was estimated to be over 99% by GC analysis.

A Caspase Inducing Inhibitor Isolated from Forsythiae fructus (연교(Forsythiae fructus)로부터 분리한 caspase 유도 저해물질)

  • Kim, Jin-Hee;Kho, Yung-Hee;Kim, Mee-Ree;Kim, Hyun-A;Lee, Sang-Myung;Lee, Choong-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.114-117
    • /
    • 2002
  • During the screening of inhibitors of caspase-3 induction in U937 human monocytic leukemia cells from natural sources, Forsythiae fructus, which showed a high level of inhibition, was selected. And then, the compound was purified from the methanol extract using silica gel column chromatography and HPLC. The inhibitor was identified as rengyolone, by spectroscophic methods of ESI-MS, $^1H-NMR$, $^{13}C-NMR$, DEPT, and HMBC. Rengyolone showed inhibitory activity of caspase-3 induction, a major protease of apoptosis cascade, with an $IC_{50}$ value of $6.25\;{\mu}g/mL$ after 7 h of treatment in U937 cells. It also showed inhibitory activity of caspace-1 induction, with an $IC_{50}$ value of $7.50\;{\mu}g/mL$ after 40 h of treatment in D10S cells. In addition, it showed protective effect against cell death with an $IC_{50}$ value of $11\;{\mu}g/mL$ on U937 cells induced by etoposide after 24 h of treatment, but did not show any cytotoxicity at the same condition without etoposide, a caspase 3 inducing agent.

Characterization of Squalene Synthase Inhibitor Isolated from Curcuma longa (울금(Curcuma longa)으로부터 분리한 squalene synthase 저해물질의 특성)

  • Choi, Sung-Won;Yang, Jae-Sung;Lee, Han-Seung;Kim, Dong-Seob;Bai, Dong-Hoon;Yu, Ju-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.297-301
    • /
    • 2003
  • An inhibitor of squalene synthase, a key enzyme in the cholesterol biosynthetic pathways and a target for improved agents to lower plasma levels of low-density lipoprotein, was sequentially purified from Curcuma longa by acetone extraction, silica gel column chromatography, and sephadex LH-20 column chromatography. Active compound, YUF-01, was successfully purified and analyzed as $C_{20}H_{21}O_6$ by electron ionization mass spectrum. Through $^1H-NMR$ and $^{13}C-NMR$ analyses, YUF-01 was identified as curcumin, which showed strong inhibition of squalene synthase.

Syntheses of Alternating Head-to-Head Copolymers of Vinyl Ketones and Vinyl Ethers, and Their Properties. Ring-Opening Polymerization of 2,3,6-Trisubstituted-3,4-dihydro-2H-pyrans

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.102-105
    • /
    • 1987
  • 2-Methoxy-6-methyl-3,4-dihydro-2H-pyran ($1_a$), 2-ethoxy-3,6-dimethyl-3,4-dihydro-2H-pyran ($1_b$), and 2-ethoxy-3-methyl-6-ethyl-3,4-dihydro-2H-pyran ($1_c$) were prepared by (4 + 2) cycloaddition reaction from the corresponding vinyl ketones and alkyl vinyl ethers. Compounds $1_{a-c}$ were ring-open polymerized by cationic catalyst to obtain alternating head-to-head (H-H) copolymers. For comparison, copolymer of head-to-tail (H-T) was also prepared by free radical copolymerization of the mixture of the corresponding monomers. The H-H copolymer exhibited some differences in its $^1H$ NMR and IR spectra. However, significant differences were showed between the H-H and H-T copolymers in the $^{13}C$ NMR spectra. Also noteworthy was that$T_g$ value of H-H copolymer was higher than that of the corresponding H-T structure. Decomposition temperature of the H-H copolymer was lower than that of the H-T copolymer. All the H-H and H-T copolymers were soluble in common solvents.

$^{13}C-NMR$ Study of the Applicaton of the “ Tools of Increasing Electron Demand ” to the 8-Aryl-tricyclo $[3.2.1.0^{2,7}]$oct-8-yl Cations

  • Gweon-Young Ryu;Jung-Hyu Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.193-196
    • /
    • 1991
  • The $^{13}C-NMR$ shifts of a series of para-substituted $8-aryl-tricyclo[3.2.1.0^{2,7}]oct-8-yl$ and $9-aryl-tricyclo[3.3.1.0^{2,8}]-non-9-yl$ cations were measured in $FSO_3H/SO_2ClF\ at\-90^{\circ}$ in order to examine whether the ${\rho}^{C^+}$ values can be used as a measure of the geometric influence on the charge delocalization resulting from ${\rho}$ conjugation in rigid tricyclopropylcarbinyl cations. Plot of the ${\Delta}{\delta}^{C+} shifts against the ${\sigma}^{C+}$ constants revealed excellent linear correlation. The 8-aryl tricyclooctyl systems yielded a ${\rho}^{C+}$ value of -5.00 with r = 0.9962. Previous investigation of the 9-aryl-tricyclononyl systems gave a correlation coefficient of r = 0.9948 with a slope of ${\rho}^{C+}$ = -4.95. A fair parallelism exists between the results of $^{19}F-NMR $ studies and the change of ${\rho}^{C+}$ value in these cations. Consequently, it is established that the ${\rho}^{C+}$ value can be used to explain the mechanism of charge stabilization of the rigid cyclopropylcarbinyl cation such as tricyclo $[3.2.1.0^{2,7}]oct-8-yl$ cation.

Synthesis and Characterization of New Group 13 Complexes of 2-Acetylpyridine-S-methyldithiocarbazate. Single-Crystal Structure of Me₂Ga[$NC_5H_4C$(CH₃)NNC(S)SMe] and Me₂In[$NC_5H_5C$(CH₃)NNC(S)SMe]

  • 백철기;강상욱;이채호;이영행;고재정
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • The synthesis and characterization of the mononuclear group 13 heterocyclic carboxaldehyde methyldithiocarbazate complexes Me2M[NC5H4CRNNC(S)SCH3] (M=Al, R=H(1); M=Ga, R=H(2); M=Al, R=CH3(3); M-Ga, R=CH3(4); M=In, R=CH3(5)) are described. Compounds 1-5 were prepared by the reaction of MMe3 (M=Al, Ga, In) with 2-formy or 2-acetylpyridine-S-methyldithiocarbazate in toluene. These compounds 1-5 have been characterized by microanalysis, NMR (1H, 13C) spectroscopy, mass spectra, and single-crystal X-ray diffraction. X-ray single-crystal diffraction analyses reveal that 4-5 are mononuclear metal compounds with coordination number of 5 and N,N,S coordination mode.

Determination of the Structure for Polysubstituted Flavonoid and 6-C-Glucosyl Flavonoids using $^{13}C-^{1}H$ Long Range Couplings

  • Lee, Min-Won
    • Archives of Pharmacal Research
    • /
    • v.17 no.6
    • /
    • pp.487-489
    • /
    • 1994
  • A flavone glycoside was isolated from the leaves of Betula platyphylla var. latifolia and characterized as $4, 6-Dimethoxy-5-hydroxyflavone-7-O-{\beta}-D-glucoside(pectolinarigenin-7-O-{\beta}-D-glucopy-ranoside)$ by method of chemical and NMR spectral analysis. $^13C-^1H$ long range coupling was confirmative for determination of its substituted position. In connection with this study, 6-C-Glucosylnalingenin and 6-C-Glucosylaromadendrin were confirmed its structures using this technique.

  • PDF