• Title/Summary/Keyword: $^1$H-NMR spectra

Search Result 409, Processing Time 0.034 seconds

Quantitative Analysis of Paeoniflorin from Paeonia lactiflora Using $^1H-NMR$

  • Yoo, Jong-Su;Song, Myoung-Chong;Ahn, Eun-Mi;Lee, Youn-Hyung;Rho, Yeong-Deok;Baek, Nam-In
    • Natural Product Sciences
    • /
    • v.12 no.4
    • /
    • pp.237-240
    • /
    • 2006
  • Paeoniflorin, the major component of the root of Paeonia lactiflora, was quantitatively analyzed using $^1H-NMR$ spectrometry. The quantity of paeoniflorin was calculated by the ratio of the intensity of the signals (H-9, H-10, H-2', 6') to the aldehyde peak of the known amount of internal standard, 2,4,6-trihydroxybenzaldehyde. These results were compared with the conventional HPLC method. The contents of paeoniflorin in P. lactiflora, which were respectively calculated by H-9, H-10, H-2', 6' in the $^1H-NMR$ spectra and HPLC, were determined $2.60{\pm}0.07,\;2.44{\pm}0.09,\;2.77{\pm}0.12\;and\;2.46{\pm}0.16%$. The advantages of quantitative $^1H-NMR$ analysis are that can be analyzed to identify and quantify, and no reference compounds required for calibration curves. Besides, it allows rapid and simple quantification for paeoniflorin with an analysis time for only 20 min without any preprocessing.

High-resolution 1H NMR Spectroscopy of Green and Black Teas

  • Jeong, Ji-Ho;Jang, Hyun-Jun;Kim, Yongae
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.2
    • /
    • pp.78-84
    • /
    • 2019
  • High-resolution $^1H$ NMR spectroscopic technique has been widely used as one of the most powerful analytical tools in food chemistry as well as to define molecular structure. The $^1H$ NMR spectra-based metabolomics has focused on classification and chemometric analysis of complex mixtures. The principal component analysis (PCA), an unsupervised clustering method and used to reduce the dimensionality of multivariate data, facilitates direct peak quantitation and pattern recognition. Using a combination of these techniques, the various green teas and black teas brewed were investigated via metabolite profiling. These teas were characterized based on the leaf size and country of cultivation, respectively.

Syntheses of Alternating Head-to-Head Copolymers of Vinyl Ketones and Vinyl Ethers, and Their Properties. Ring-Opening Polymerization of 2,3,6-Trisubstituted-3,4-dihydro-2H-pyrans

  • Lee, Ju-Yeon;Cho, I-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.102-105
    • /
    • 1987
  • 2-Methoxy-6-methyl-3,4-dihydro-2H-pyran ($1_a$), 2-ethoxy-3,6-dimethyl-3,4-dihydro-2H-pyran ($1_b$), and 2-ethoxy-3-methyl-6-ethyl-3,4-dihydro-2H-pyran ($1_c$) were prepared by (4 + 2) cycloaddition reaction from the corresponding vinyl ketones and alkyl vinyl ethers. Compounds $1_{a-c}$ were ring-open polymerized by cationic catalyst to obtain alternating head-to-head (H-H) copolymers. For comparison, copolymer of head-to-tail (H-T) was also prepared by free radical copolymerization of the mixture of the corresponding monomers. The H-H copolymer exhibited some differences in its $^1H$ NMR and IR spectra. However, significant differences were showed between the H-H and H-T copolymers in the $^{13}C$ NMR spectra. Also noteworthy was that$T_g$ value of H-H copolymer was higher than that of the corresponding H-T structure. Decomposition temperature of the H-H copolymer was lower than that of the H-T copolymer. All the H-H and H-T copolymers were soluble in common solvents.

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

An NMR Study on Complexation of Cesium Ion by p-tert-Butylcalix[6]arene Ethyl Ester

  • Chung, Kee-Choo;Namgoong, Hyun;Lee, Jo-Woong
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.609-616
    • /
    • 2004
  • Complexation of cesium ion by p-tert-butylcalix[6]arene ethyl ester was studied by NMR spectroscopy in nonpolar $CDCl_3$ and polar acetone-$d_6$ and the results were compared with each other. Analysis of temperature dependent $^1H$ spectra and titration curves reveals that both solvents result in a 1 : 1 cone-form complex with nonpolar $CDCl_3$yielding a more tightly bound one than acetone-$d_6$. Unexpectedly, at very low temperature, we have found that two phenyl ring proton peaks of equal intensity appear both in $CDCl_3$and in acetone-$d_6$ solution which gradually collapse and eventually coalesce into a single line as temperature is raised. This observation could be interpreted in terms of the chemical exchange through direct and/or indirect interconversion between two equivalent conformations possible the complex in both solvents over the temperature range observed. And broadening of $^{133}Cs$ (I = 7/2) nmr line with increasing temperature has also been observed, indicating the exchange of $^{133}Cs$ ion between the complex and the solvent. From numerical fitting of lineshape changes for one-dimensional $^1H$ and $^{133}Cs$ spectra, the exchange rate constants and other relevant parameters for this conformational interconversion and the complex-solvent exchange were deduced.

NMR Assignments of Two Furofuran Lignans from Sesame Seeds

  • Kang, Sam-Sik;Kim, Ju-Sun;Jung, Jee-Hyung;Kim, Young-Hee
    • Archives of Pharmacal Research
    • /
    • v.18 no.5
    • /
    • pp.361-363
    • /
    • 1995
  • Two furofuran lignans, sesamolin and sesangolin were isolated from the seeds of Sesamum indicum and S.angolense, respectively. Detailed analysis of the $^1H-and^{13}C-NMR$ spectra of these lignans was carried out by the application of two-dimensional $^1H-^1/H\; COSY\; and^1/H^{13}C$ multiple-bond, multiple-quantum spectroscopic correlation techniques.

  • PDF

Expression and Purification of the Helicase-like Subdomains, H1 and H23, of Reverse Gyrase from A. fulgidus for Heteronuclear NMR study

  • Kwon, Mun-Young;Seo, Yeo-Jin;Lee, Yeon-Mi;Lee, Ae-Ree;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.95-98
    • /
    • 2015
  • Reverse gyrase is a hyperthermophile specific protein which introduces positive supercoils into DNA molecules. Reverse gyrase consists of an N-terminal helicase-like domain and a C-terminal topoisomerase domain. The helicase-like domain shares the three-dimensional structure with two tandem RecA-folds (H1 and H2), in which the subdomain H2 is interrupted by the latch domain (H3). To understand the physical property of the hyperthermophile-specific protein, two subdomains af_H1 and af_H23 have been cloned into E. coli expression vector, pET28a. The $^{15}N$-labeled af_H1 and af_H23 proteins were expressed and purified for heteronuclear NMR study. The af_H1 protein exhibits the well-dispersion of amide signals in its $^1H/^{15}N$-HSQC spectra and thus further NMR study continues to be progressed.

Molecular Enginering. Container Hosts Having Eight Undecyl Substituents Have High Solubility in Chlorinated Solvents

  • 백경수;주경미;권석준;임혜재;김용주
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.80-86
    • /
    • 1997
  • Nine new solubility-increased container hosts having eight undecyl substituents were synthesized and characterized. 1H NMR spectral data showed integral inclusion state of carceplexes and their stability. 1H NMR chemical shifts of guest DMA were correlated to the host's cavity dimensions shrinked by constrictive binding. Carceplex and hemicarcerand showed their distinctive FD mass spectra.

Structural Analysis of Major Antimicrobial Substance Obtained from Leaf Mustard(Brassica juncea) (갓(Brassica juncea)의 주 항균물질의 구조 분석)

  • 강성구
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.702-706
    • /
    • 1995
  • A major component(compound A) in the ethylacetate fraction exhibited a strong antimicrobial activity was identified by UV, IR, FABMS and NMR. The compound A showed strong absorbance at 209, 259 and 359nm, indicating a flavonoid ring structure. IR spectrum possessed absorbance of OH at 3400∼3300cm-1, ketone at around 1650cm-1, and aromatic C=C at around 1660cm-1. Molecular weight of the compound A calculated as 478 from the information of m/z 479(M+H)+ and m/z 477(M-H)+ in the FABMS spectrum. Molecular formula of this compound was found to be C22H22O12 from m/z 479.1220(+3.1mmu for C22H23O12) of HRFABMS spectrum and from 13C-NMR spectrum. 1H-NMR and 13C-NMR spectra of the compound A revealed aromatic proton and benzene rings. Distortionless enhancement by polarization transfer(DEPT) exhibited that the compound A possessed 10 quaternary carbons and 3 substituted benzene rings including a methoxy group substitution. The compound A was identified as isorhamnetin 3-O-β-glucopyranoside by spectrophotometric methods in conjunction with 1H-1H COSY, 1H-13C COSY and HMBC, which revealed a flavone with OH group at 3, 5, 7, and 4' and methoxy group at 3' positions esterified to glucose.

  • PDF

Oxidative Addition Reaction of Mono(aryl)cyanoplatinum(Ⅱ) Complex with Two Amino Ligands with the Dihalogens

  • Ko Jaejung;Kim Moonsik;Kim Seho;Shin Yookil
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.135-139
    • /
    • 1992
  • The mono(aryl)cyanoplatinum(II) complex $[Pt(CN)(C_6H_3{CH_2NMe_2}_2-26)]$, reacts with the dihalogens to yield the mono(aryl)cyanoplatinum complexes $[PtX_2(CN)(C_6H_3{CH_2NMe_2}_2-26)]$, (X = Cl, Br, I). The structural configuration of the two halogen atoms for a square planar platinum complex was studied by 1H-NMR spectroscopy and led to a mixture of trans and cis orientation. The trans orientation was found to be more stable in energy (1.33 kcal/mol) than the cis orientation by means of Extended H ckel calculations. On the base of a combination of the analysis of $^1H-NMR$, $^{13}C-NMR spectra and computational calculations it is assumed that the intermediate consists of an initial attack in the linear transition state, leading to the $S_{N}2$ type mechanism.