• Title/Summary/Keyword: $^1$H-NMR spectra

Search Result 409, Processing Time 0.022 seconds

Synthesis of 3,4-Dihydro-2H-Pyran derivatives Utilizing Ag2CO3/Celite (Ag2CO3/Celite를 이용한 3,4-다이하이드로-2H-피란 유도체들의 합성)

  • Kim, Byung-So
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.331-336
    • /
    • 2006
  • An efficient synthesis of 3,4-dihydro-2H-pyrans is achieved by $Ag_2CO_3$/celite mediated reaction of 1,3-dicarbonyl compounds with vinyl ether in moderate yields. This method has been applied to the synthesis of 3,4-dihydro-2H-pyranochromens and 3,4-dihydro-2H-benzochromen. 3,4-Dihydro-2H-pyranochromens were easily converted to 4H-pyranochromens by elimination of ethoxy group. The structures of these compound were identified by IR and $^1H$ NMR-Spectra.

  • PDF

Synthesis and Characterization of Polymer and Polymer Complex with Some Transition Metal Ions (몇 개의 전이금속 이온과 고분자와 고분자 Complex의 합성과 특성연구)

  • Badr, S.K.;Mohamed, T.Y.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2010
  • Polyamide derived from azo compound of o-amino phenol coupled with acetyl acetone, maleic anhydride acid and p-phenylene diamine were prepared. The prepared polyamide (PA) was refluxed with metal salts of transition metal ions include, $Co^{+2},\;Cr^{+2},\;Ni^{+2},\;Cu^{+2},\;Zn^{+2},\;Cd^{+2}$ and $Fe^{+3}$ in dimethyl formamide (DMF) in different molar ratios. These complexes were characterized and identified by elemental and thermal analysis, IR, 1H NMR spectra. The data showed that PA ligand coordinates with metal ions in abidentate manner through donating N=N and O-H groups. The metal ions are surrounded by coordinated water molecules and anions to establish the geometrical structure of the complexes. The thermal analysis degradation at different temperatures explained the weight loss of hydrated water and the decompositions of complexes until a constant weight loss of metal oxides is obtained.

Determination of the Solution Structure of Malonyl-CoA by Two-Dimensional Nuclear Magnetic Resonance Spectroscopy and Dynamical Simulated Annealing Calculations

  • Jung, Jin-Won;An, Jae-Hyung;Kim, Yu-Sam;Bang, Eun-Jung;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.288-293
    • /
    • 1999
  • In order to understand the initial interaction of the substrates malonate, ATP, and CoA with malonyl-CoA synthetase, the catalytic product malonyl-CoA was characterized by NMR spectroscopy and molecular modeling. To assign proton and carbon chemical shifts, two-dimensional $^1H-^1H$ DQF-COSY and $^1H-^{13}C$ HMBC experiments were used. The structure of malonyl-CoA in the solution phase was determined based on distance constraints from NOESY and ROESY spectra. The structures were well-converged around the pantetheine region with the pairwise RMSD value of 0.08 nm. The solution structure exhibited a compact folded conformation with intramolecular hydrogen bonds among its carbonyl and hydroxyl groups. These findings will help us to understand the initial interaction of malonate and CoA with malonyl-CoA synthetase.

  • PDF

Acaricidal Activity and Function of Mite Indicator Using Plumbagin and Its Derivatives Isolated from Diospyros kaki Thunb. Roots (Ebenaceae)

  • Lee, Chi-Hoon;Lee, Hoi-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.314-321
    • /
    • 2008
  • Acaricidal effects of materials derived from Diospyros kaki roots against Dermatophagoides farinae and D. pteronyssinus were assessed using impregnated fabric disk bioassay and compared with that of the commercial benzyl benzoate. The observed responses varied according to dosage and mite species. The $LD_{50}$ values of the chloroform extract of Diospyros kaki roots were 1.66 and $0.96{\mu}g/cm^2$ against D. farinae and D. pteronyssinus. The chloroform extract of Diospyros kaki roots was approximately 15.2 more toxic than benzyl benzoate against D. farinae, and 7.6 times more toxic against D. pteronyssinus. Purification of the biologically active constituent from D. kaki roots was done by using silica gel chromatography and high-performance liquid chromatography. The structure of the acaricidal component was analyzed by GC-MS, $^1H-NMR,\;^{13}C-NMR,\;^1H-^{13}C$ COSY-NMR, and DEPT-NMR spectra, and identified as plumbagin. The acaricidal activity of plumbagin and its derivatives (naphthazarin, dichlon, 2,3-dibromo-1,4-naphthoquinone, and 2-bromo-1,4-naphthoquinone) was examined. On the basis of $LD_{50}$ values, the most toxic compound against D. farinae was naphthazarin $(0.011{\mu}g/cm^2)$ followed by plumbagin $(0.019{\mu}g/cm^2),$ 2-bromo-1,4-naphthoquinone $(0.079{\mu}g/cm^2)$, dichlon $(0.422{\mu}g/cm^2)$, and benzyl benzoate $(9.14{\mu}g/cm^2)$. Additionally, the skin color of the dust mites was changed from colorless-transparent to dark brown-black by the treatment of plumbagin. Similar results have been exhibited in its derivatives (naphthazarin, dichlon, and 2-bromo-1,4-naphthoquinone). In contrast, little or no discoloration was observed for benzyl benzoate. From this point of view, plumbagin and its derivatives can be very useful for the potential control agents, lead compounds, and indicator of house dust mites.

Synthesis and Structure of Nickel(II) Complex with N-Benzylisonitrosoacetylacetone Imine (N-Benzylisonitrosoacetylacetone Imine Ni(II) 착물의 합성 및 구조)

  • Byung Kyo Lee;Dae Sub O;Heung Lark Lee
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.536-542
    • /
    • 1988
  • A nickel(Ⅱ) complex, Ni(IAA-NBz) (IAA-NBz') with ligand, N-benzylisonitrosoacetyl acetone imine (H-IAA-NBz) has been synthesized. This complex is very stable at room temperature and has cis-form and trans-form isomers. The ratio of nickel (Ⅱ) ion and ligand combined is 1 : 2. The elemental analysis, ir, nmr. electronic spectra and mass spectra have been studied. It is suggested from these studies that the isonitroso group of one ligand, H-IAA-NBz coordinates to nickel(Ⅱ)ion through the nitrogen atom to form five-membered ring, while that of the other ligand, H-IAA-NBz coordinates to nickel (Ⅱ) ion through the oxygen atom to form six-membered ring in square-planar complex.

  • PDF

Comparison of metabolic profiling of Daphnia magna between HR-MAS NMR and solution NMR techniques

  • Kim, Seonghye;Lee, Sujin;Lee, Wonho;Lee, Yujin;Choi, Juyoung;Lee, Hani;Li, Youzhen;Ha, Seulbin;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.2
    • /
    • pp.12-16
    • /
    • 2021
  • Daphnia magna is used as target organism for environmental metabolomics. The metabolome of D. magna was studied with NMR spectroscopy. Most studies used the extract of D. magna, but the reproducibility cannot be obtained using extracted sample. In this study, lyophilized D. magna samples were analyzed with two different 1H NMR techniques, HR-MAS on intact tissues and solution NMR on extracted tissues. Samples were measured three times using 600 MHz NMR spectrometer. Metabolite extraction required more than twice as many D. magna, but the metabolite intensity was lower in solution NMR. In the spectra of HR-MAS NMR, the lipid signal was observed, but they did not interfere with metabolite profiling. We also confirmed the effect of swelling time on signal intensities of metabolites in HR-MAS NMR, and the results suggest that appropriate swelling should be used in lyophilized D. magna to improve the accuracy of metabolite profiles.

A Naked Eye Detection of Fluoride with Urea Receptors Which have both an Azo Group and a Nitrophenyl Group as a Signaling Group

  • Dang, Nhat Tuan;Park, Jin-Joo;Jang, Soon-Min;Kang, Jong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1204-1208
    • /
    • 2010
  • Anion recognition via hydrogen-bonding interactions could be monitored with changes in UV-vis absorption spectra and in some cases easily monitored with naked eye. Urea receptors 1 and 2 connected with both an azo group and a nitrophenyl group as a signaling group for color change proved to be an efficient naked eye receptor for the fluoride ion. The anion recognition phenomena of the receptors 1 and 2 via hydrogen-bonding interactions were investigated through UV-vis absorption and $^1H$ NMR spectra.

Synthesis and Properties of Oligomers Containing 3-Triethylsilyl-1-silacyclopent-3-ene and Borane Derivatives via Polyaddition Reaction

  • Lee, Jung-Hwan;Park, Young-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.6
    • /
    • pp.889-894
    • /
    • 2004
  • Polyaddition reactions of 1,1-diethynyl-3-triethylsilyl-1-silacyclopent-3-ene with several organoborane derivatives have afforded the oligomeric materials containing organosilacyclic group and organoboron moiety along the oligomer main chains. All of these materials are soluble in THF as well as chloroform, and their molecular weights are in the range of 1,990/1,190-21,950/7,050 ($M_w/M_n$) with the polydispersity indexes of 1.67-3.43. The prepared oligomers are characterized by several spectroscopic methods such as $^1H,\;^{13}C, \;^{29}Si,\;^{11}B$ NMR and FTIR spectra along with elemental analysis. FTIR spectra of all the oligomers show that the new strong C=C stretching frequencies appear at 1599-1712 $cm^{-1}$, in particular. The UV-vis absorption spectra of the materials in THF solution exhibit the strong absorption bands at the ${\lambda}_{max}$ of 268-275 nm. The oligomeric materials show that the strong excitation peaks appear at the ${\lambda}_{max}$ of 255-279 nm and the strong fluorescence emission bands at the ${\lambda}_{max}$ of 306-370 nm. All the spectroscopic data suggest that the obtained materials contain both the organoboron ${\pi}$-conjugation moiety of C=C-B-C=C and the organosilacyclic group of 3-triethylsilyl-1-silacyclopent-3-ene along the oligomer main chains. The oligomers are thermally stable up to 162-200 $^{\circ}C$ under nitrogen.

Isolation and Identification of α-Glucosidase Inhibitory Compounds, Hyperoside, and Isoquercetin from Eleutherococcus senticosus Leaves (가시오갈피(Eleutherococcus senticosus) 잎으로부터 α-Glucosidase의 저해 활성 물질, Hyperoside와 Isoquercetin의 분리 및 구조·동정)

  • Lee, Ki Yeon;Hong, Soo Young;Jeong, Hye Jeong;Lee, Jae Hyoung;Lim, Sang Hyun;Heo, Nam-Kee;Kim, Songmun;Kim, Hee-Yeon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1858-1864
    • /
    • 2014
  • In the present investigation, the anti-diabetic potential of 80% ethanol extract of Eleutherococcus senticosus leaves (EEES) was examined based on ${\alpha}$-glucosidase inhibitory activities. EEES was sequentially fractionated with n-hexane, chloroform, ethyl acetate (EtAOc), n-butanol, and $H_2O$. Of the various fractions, EtAOc fraction effectively inhibited ${\alpha}$-glucosidase activity by 68.05%. Therefore, EtAOc fraction was selected for further isolation and identification studies. EtAOc fraction was separated by medium pressure liquid chromatography with silica and ODS gel to yield eight fractions (EAA~EAH). Based on the results of ${\alpha}$-glucosidase inhibitory activity, EAH fraction was re-chromatographed to yielded four more fractions (EAHA~EAHD). Of these, EAHC fraction showed higher ${\alpha}$-glucosidase inhibitory activity of 93.60%. EAHC fraction was re-chromatographed and yielded EAHCA and EAHCB fractions. Further, identification and chemical structures of these two fractions were analyzed using $^1H$-NMR, $^{13}C$-NMR, and mass spectra data. Based on the results of the spectral data, the isolated compounds were identified as hyperoside and isoquercetin. Results of the present study indicate that the isolated compounds, hyperoside, and isoquercetin from leaves of E. senticosus could be used for the development of new anti-diabetic drugs.

Mechanistic Study of Half-titanocene-based Reductive Pinacol Coupling Reaction

  • Kim, Young-Jo;Do, Young-Kyu;Park, Sung-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3973-3978
    • /
    • 2011
  • The reductive pinacol coupling reaction of aldehydes or ketones creating a new C-C bond has been a major tool to produce 1,2-diol compounds. The reaction mechanism is known to be composed of sequential three steps (activation, coupling, and dissociation). In this work, we studied the dissociation step of half-titanocene-based catalytic systems. Cp and $Cp^*$ derivatives of the pinacolato-bridged dinuclear complex were synthesized and evaluated as possible models for intermediates from the coupling step. We monitored $^1H$-NMR spectra of the reaction between the metalla-pinacol intermediates and $D_2O$. New reaction routes of the dissociation step including oxo- and pinacolato-dibridged dinuclear complexes and oxo-bridged multinuclear complexes have been suggested.