• Title/Summary/Keyword: $^{222}Rn$

Search Result 103, Processing Time 0.023 seconds

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment (다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk;Choi, Hyeon Young
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.531-549
    • /
    • 2016
  • The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.

Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area (청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Moon-Su;Lee, Young-Joon;Han, Jin-Seok;Jang, Hyo-Geun;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.163-178
    • /
    • 2011
  • A test borehole was drilled in the Cheongwon area to investigate the relationship between geochemical environment and the natural occurrence of radioactive materials (uranium and Rn-222) in borehole groundwater. The borehole encountered mainly biotite schist and biotite granite, with minor porphyritic granite and basic dykes. Six groundwater samples were collected at different depths in the borehole using the double-packed system. The groundwater pH ranges from 5.66 to 8.34, and the chemical type of the groundwater is Ca-$HCO_3$. The contents of uranium and Rn-222 in the groundwater are 0.03-683 ppb and 1,290-7,600 pCi/L, respectively. The contents of uranium and thorium in the rocks within the borehole are 0.51-23.4 ppm and 0.89-62.6 ppm, respectively. Microscope observations of the rock core and analyses by electron probe microanalyzer (EPMA) show that most of the radioactive elements occur in the biotite schist, within accessory minerals such as monazite and limenite in biotite, and in feldspar and quartz. The high uranium content of groundwater at depths of -50 to -70 m is due to groundwater chemistry (weakly alkaline pH, an oxidizing environment, and high concentrations of bicarbonate). The origin of Rn-222 could be determined by analyzing noble gas isotopes (e.g., $^3He/^4He$ and $^4He/^{20}Ne$).

Environmental Characteristics of Naturally Occurring Radioactive Materials (238U, 222Rn) Concentration in Drinking Groundwaters of Metamorphic Rock Areas: Korea (국내 변성암 지역 음용지하수 중 자연방사성물질(238U, 222Rn)의 환경 특성 연구)

  • Ju, Byoung Kyu;Kim, Moon Su;Jeong, Do Hwan;Hong, Jung Ki;Kim, Dong Su;Noh, Hoe Jung;Yoon, Jeong Ki;Kim, Tae Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.82-92
    • /
    • 2013
  • This study has investigated naturally occurring radioactive materials (N.O.R.M; $^{238}U$, $^{222}Rn$) for 353 drinking groundwater wells in metamorphic rock areas in Korea. Uranium concentrations ranged from N.D (not detected) to 563.56 ${\mu}g/L$ (median value, 0.68 ${\mu}g/L$) and radon concentrations ranged from 108 to 11,612 pCi/L (median value, 1,400 pCi/L). Uranium and radon concentrations in the groundwater generally are similar to USA with similar geological setting. Uranium concentrations in 9 wells (2.6%) exceeded 30 ${\mu}g/L$, which is the maximum contaminant level (MCL) by the US environmental protection agency (EPA), radon concentrations in 46 wells (13%) exceeded 4,000 pCi/L, which is the Alternative MCL (AMCL) by the US.EPA. The log-log correlation coefficient between uranium and radon was 0.32. The correlation coefficient between uranium and pH was 0.12 and the correlation coefficient between radon and temperature was -0.01. The correlation coefficient between uranium and $HCO_3$ was 0.09 and the correlation coefficient between uranium and Ca was 0.11. The median value of uranium was high Chung-Buk (1.78 ${\mu}g/L$), Gyeong-Buk (1.37 ${\mu}g/L$), In-Cheon (1.06 ${\mu}g/L$) for each province. On the other hand, the median value of radon was high In-Cheon (2,962 pCi/L), Chung-Buk (2,339 pCi/L), Jeon-Buk (2,165 pCi/L) for each province. Jeon-Buk for log-log correlation coefficient is the highest (0.63) among provinces.

Distribution of $^{222}Rn$ Concentration in Seoul Subway Stations (서울지역 지하철역의 라돈농도 분포 특성)

  • Jeon, Jae-Sik;Kim, Dok-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.588-595
    • /
    • 2006
  • Indoor radon($^{222}Rn$) concentrations of subway stations in Seoul area were measured to survey the environmental indoor radon levels and to identify sources of radon. The radon concentration of indoor air by method of long-term measuring with a-track detector were surveyed at 232 subway stations from 1998 to 2004. And the radon concentration in ground-water was measured with a method of alpha particle counting. To trace main source of radon, 8 out of 232 stations were selected and their radon concentrations in tunnel and on platform were analyzed. Total geometric mean and arithmetic mean of radon concentrations in all stations from 1998 to 2004 were $1.40{\pm}1.94pCi/L,\;1.65{\pm}1.07$ respectively. Geometric means of radon concentrations on platform and concourse were $1.54{\pm}1.96pCi/L,\;1.23{\pm}1.88pCi/L$ respectively, with higher concentration at the platform than at the concourse. The geological structure was significantly correlated to the indoor radon concentration in subway stations region. Radon concentrations of adjacent tunnel and ground-water of subway station was significantly correlated to the indoor radon concentration in subway stations. And There was a significant difference in radon concentration, depending on the depth levels in platform of subway stations(p<0.05).

Distribution of Some Environmental Radionuclides in Rocks and Soils of Guemjeong-Gu Area in Busan, Korea (부산시 금정구 일대 암석 및 토양에서 일부 환경방사성 핵종들의 분포 특성)

  • Lee, Hyo-Min;Moon, Ki-Hoon;Kim, Jin-Seop;Ahn, Jung-Keun;Kim, Hyun-Chul
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.179-190
    • /
    • 2008
  • The distribution characteristics of some major environmental radionuclides ($^{40}K$, $^{228}Ac$, $^{226}Ra$, $^{222}Rn$) and U in rocks, soils and soil gas were studied at Geumjeong-Gu, Busan, Korea. The activities of radionuclides in granitic rocks are decreased in the odor of $^{40}K$>thorium decay series>uranium decay series. This reveals that Th was relatively more enriched in granitic rocks than U. The U content and activity of $^{226}Ra$ and $^{228}Ac$, however, don't reflect the fractionation sequence of granitic rocks in the study area. The activities of all these radionuclides and U content in soils are generally higher than in rocks, and their distribution in rocks, soils and soil gas show very low co-relationship. These facts indicate that the activities of radionuclides in soil and soil gas were greatly affected by leaching and adsorption properties of the radionuclides and their parents during weathering and pedogenetic process rather than their concentrations in parent rocks.

Determining Groundwater-surface Water Interaction at Coastal Lagoons using Hydrogeochemical Tracers (수리화학적 환경 추적자를 이용한 강원도 석호지역에서의 지하수-지표수 상호작용에 대한 연구)

  • Dong-Hun Kim;Jung-Yun Lee;Soo Young Cho;Hee Sun Moon;Youn-Young Jung;Yejin Park;Yong Hwa Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • Groundwater-surface water interaction was evaluated using water quality parameters (temperature and electrical conductivity), distributions of stable water isotopes (δ2H and δ 18O), and Rn-222 in lagoon water, groundwater, and seawater at three coastal lagoons (Songji (SJ), Youngrang (YR), and Sunpo (SP) Lagoon) in South Korea. From the results of composition and distributions of δ2H and δ18O, it was found that groundwater fraction of lagoon water in YR Lagoon (76%) was slightly higher than those of SJ (42%), and SP (63%) Lagoon. Based on Rn-222 mass balance model, groundwater discharge into SJ Lagoon in summer 2020 was estimated to be (3.2±1.1)×103 m3 day-1, which showed a similar or an order of magnitude higher than the results of previous studies conducted in coastal lagoons. This study can provide advanced techniques to evaluate groundwater-surface water interaction in coastal lagoons, wetlands, and lakes, and help to determine the effects of groundwater on coastal ecosystems.

Power Control Scheme for Effective Serving Cell Selection in Relay Environment of 3GPP LTE-Advanced System (3GPP LTE-Advanced 시스템의 Relay 환경에서 효율적인 Serving Cell 선택을 위한 Power Control 기법)

  • Min, Young-Il;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.215-222
    • /
    • 2011
  • In this paper, we propose a power control scheme for effective serving cell selection in Relay environment of 3GPP (3rd Generation Partnership Project) LTE (Long Tenn Evolution)-Advanced system. A conventional serving cell selection scheme which does not use channel states of backhaul link has a problem that this scheme does not select serving cell supporting maximum throughput. Also, conventional proposed serving cell selection schemes that eNB or RN transmits channel states of backhaul link have problems that conventional schemes need to additional data transmission, serving cell selection process complexity is increased because UE considers channel states of backhaul link, and received signal is degraded because strong interference which is transmission signal from RN. Therefore, for solve these problems, we propose power control scheme that RN control transmission power according to received SINR (Signal to Interference plus Noise Ratio) of backhaul link. By extensive computer simulation, we verify that the power control Relay scheme is attractive and suitable for the Relay environment.