• Title/Summary/Keyword: $^{18}F$-fluorodeoxyglucose positron emission tomography

Search Result 91, Processing Time 0.032 seconds

Evaluation of Cancer Treatment Using FDG-PET (FDG-PET을 이용한 암 치료 효과의 평가)

  • Ryu, Jin-Sook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.64-73
    • /
    • 2002
  • FDG-PET has potential as an effective, non-invasive tool to measure tumor response to anticancer therapy. The changes in tumor FDG uptake may provide an early, sensitive guide to the clinical and subclinical response of tumors to cancer treatment, as well as functional assessment of residual viable tumor. This may allow the evaluation of subclinical response to anticancer drugs in early clinical trials and improvements in patients management. However, monitoring tumor responses with FDG-PET is still in its infancy. The methods of measurement of FDG uptake are currently diverse and timing with respect to anti cancer therapy variable. Therefore, there is a need for larger-scale trials along with standardized methodology and a collection of reproducibility data. The recent guideline from the European group seems to be the most comprehensive. In future, the combination of morphological and metabolic images may improve the quantitative nature of these measurements by relating tumor viability to total tumor mass. More data on sensitivity and specificity of FDG-PET technique are needed along with continued advancement of PET methodology.

Prognostic value of pretreatment 18F-FDG PET-CT in radiotherapy for patients with hepatocellular carcinoma

  • Jo, In Young;Son, Seok-Hyun;Kim, Myungsoo;Sung, Soo Yoon;Won, Yong Kyun;Kang, Hye Jin;Lee, So Jung;Chung, Yong-An;Oh, Jin Kyoung;Kay, Chul-Seung
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.179-187
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the predictable value of pretreatment $^{18}F$-fluorodeoxyglucose positron emission tomography-computed tomography ($^{18}F$-FDG PET-CT) in radiotherapy (RT) for patients with hepatocellular carcinoma (HCC) or portal vein tumor thrombosis (PVTT). Materials and Methods: We conducted a retrospective analysis of 36 stage I-IV HCC patients treated with RT. $^{18}F$-FDG PET-CT was performed before RT. Treatment target was determined HCC or PVTT lesions by treatment aim. They were irradiated at a median prescription dose of 50 Gy. The response was evaluated within 3 months after completion of RT using the Response Evaluation Criteria in Solid Tumors (RECIST). Response rate, overall survival (OS), and the pattern of failure (POF) were analyzed. Results: The response rate was 61.1%. The statistically significant prognostic factor affecting response in RT field was maximal standardized uptake value (maxSUV) only. The high SUV group (maxSUV ${\geq}5.1$) showed the better radiologic response than the low SUV group (maxSUV < 5.1). The median OS were 996.0 days in definitive group and 144.0 days in palliative group. Factors affecting OS were the %reduction of alpha-fetoprotein (AFP) level in the definitive group and Child-Pugh class in the palliative group. To predict the POF, maxSUV based on the cutoff value of 5.1 was the only significant factor in distant metastasis group. Conclusion: The results of this study suggest that the maxSUV of $^{18}F$-FDG PET-CT may be a prognostic factor for treatment outcome and the POF after RT. A %reduction of AFP level and Child-Pugh class could be used to predict OS in HCC.

Prognostic value of FDG PET/CT during radiotherapy in head and neck cancer patients

  • Kim, Suzy;Oh, Sowon;Kim, Jin Soo;Kim, Yu Kyeong;Kim, Kwang Hyun;Oh, Do Hoon;Lee, Dong-Han;Jeong, Woo-Jin;Jung, Young Ho
    • Radiation Oncology Journal
    • /
    • v.36 no.2
    • /
    • pp.95-102
    • /
    • 2018
  • Purpose: To evaluate the prognostic value of $^{18}F$-fluorodeoxyglucose positron-emission tomography (FDG PET) with computed tomography (CT) before and during radiotherapy (RT) in patients with head and neck cancer. Methods: Twenty patients with primary head and neck squamous cell carcinoma were enrolled in this study, of whom 6 had oropharyngeal cancer, 10 had hypopharyngeal cancer, and 4 had laryngeal cancer. Fifteen patients received concurrent cisplatin and 2 received concurrent cetuximab chemotherapy. FDG PET/CT was performed before RT and in the 4th week of RT. The parameters of maximum standardized uptake value, metabolic tumor volume, and total lesion glycolysis (TLG) of the primary tumor were measured, and the prognostic significance of each was analyzed with the Cox proportional hazards model. Results: Higher TLG (>19.0) on FDG PET/CT during RT was a poor prognostic factor for overall survival (OS) (p = 0.001) and progression-free survival (PFS) (p = 0.007). In the multivariate analysis, TLG during RT as a continuous variable was significantly associated with OS and PFS rate (p = 0.023 and p = 0.016, respectively). Tumor response worse than partial remission at 1 month after RT was another independent prognostic factor for PFS (p = 0.024). Conclusions: Higher TLG of the primary tumor on FDG PET/CT during RT was a poor prognostic factor for OS and PFS in patients with head and neck cancer.

The Prognostic Value of 18F-Fluorodeoxyglucose PET/CT in the Initial Assessment of Primary Tracheal Malignant Tumor: A Retrospective Study

  • Dan Shao;Qiang Gao;You Cheng;Dong-Yang Du;Si-Yun Wang;Shu-Xia Wang
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.425-434
    • /
    • 2021
  • Objective: To investigate the potential value of 18F-fluorodeoxyglucose (FDG) PET/CT in predicting the survival of patients with primary tracheal malignant tumors. Materials and Methods: An analysis of FDG PET/CT findings in 37 primary tracheal malignant tumor patients with a median follow-up period of 43.2 months (range, 10.8-143.2 months) was performed. Cox proportional hazards regression analyses were used to assess the associations between quantitative 18F-FDG PET/CT parameters, other clinic-pathological factors, and overall survival (OS). A risk prognosis model was established according to the independent prognostic factors identified on multivariate analysis. A survival curve determined by the Kaplan-Meier method was used to assess whether the prognosis prediction model could effectively stratify patients with different risks factors. Results: The median survival time of the 37 patients with tracheal tumors was 38.0 months, with a 95% confidence interval of 10.8 to 65.2 months. The 3-year, 5-year and 10-year survival rate were 54.1%, 43.2%, and 16.2%, respectively. The metabolic tumor volume (MTV), total lesion glycolysis (TLG), maximum standardized uptake value, age, pathological type, extension categories, and lymph node stage were included in multivariate analyses. Multivariate analysis showed MTV (p = 0.011), TLG (p = 0.020), pathological type (p = 0.037), and extension categories (p = 0.038) were independent prognostic factors for OS. Additionally, assessment of the survival curve using the Kaplan-Meier method showed that our prognosis prediction model can effectively stratify patients with different risks factors (p < 0.001). Conclusion: This study shows that 18F-FDG PET/CT can predict the survival of patients with primary tracheal malignant tumors. Patients with an MTV > 5.19, a TLG > 16.94 on PET/CT scans, squamous cell carcinoma, and non-E1 were more likely to have a reduced OS.

Correlation between glucose transporter type-1 expression and $^{18}F$-FDG uptake on PET in oral cancer

  • Kim, Chul-Hwan;Kim, Moon-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.4
    • /
    • pp.212-220
    • /
    • 2012
  • Objectives: Fluorine-18 fluorodeoxyglucose positron emission tomography ($^{18}F$-FDG PET) is a non-invasive diagnostic tool for many human cancers wherein glucose uptake transporter-1 (GLUT-1) acts as a main transporter in the uptake of $^{18}F$-FDG in cancer cells. Increased expression of glucose transporter-1 has been reported in many human cancers. In this study, we investigated the correlation between $^{18}F$-FDG accumulation and expression of GLUT-1 in oral cancer. Materials and Methods: We evaluated 42 patients diagnosed with oral squamous cell carcinoma (OSCC) and malignant salivary gland tumor as confirmed by histology. 42 patients underwent pre-operative $^{18}F$-FDG PET, with the maximum standardized uptake value ($SUV_{max}$) measured in each case. Immunohistochemical staining was done for each histological specimen, and results were evaluated post-operatively according to the percentage (%) of positive area, intensity, and staining score. Results: For OSCC, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For malignant salivary gland tumor, $SUV_{max}$ significantly increased as T stage of tumor classification increased. For OSCC, GLUT-1 was expressed in all 36 cases. GLUT-1 staining score (GSS) increased as T stage of tumor classification increased, with the difference statistically significant. For malignant salivary gland tumor, GLUT-1 expression was observed in all 6 cases; average GSS was significantly higher in patients with cervical lymph node metastasis than that in patients without cervical lymph node metastasis. Average GSS was higher in OSCC ($11.11{\pm}1.75$) than in malignant salivary gland tumor ($5.33{\pm}3.50$). No statistically significant correlation between GSS and $SUV_{max}$ was observed in OSCC or in malignant salivary gland tumor. Conclusion: We found no statistically significant correlation between GSS and $SUV_{max}$ in OSCC or in malignant salivary gland tumor. Studies on the various uses of GLUT during $^{18}F$-FDG uptake and SUV and GLUT as tumor prognosis factor need to be conducted through further investigation with large samples.

Potential Utility of FDG PET-CT as a Non-invasive Tool for Monitoring Local Immune Responses

  • Lee, Seungho;Choi, Seohee;Kim, Sang Yong;Yun, Mi Jin;Kim, Hyoung-Il
    • Journal of Gastric Cancer
    • /
    • v.17 no.4
    • /
    • pp.384-393
    • /
    • 2017
  • Purpose: The tumor microenvironment is known to be associated with the metabolic activity of cancer cells and local immune reactions. We hypothesized that glucose metabolism measured by 2-deoxy-2-($^{18}F$)fluoro-D-glucose ($^{18}F-FDG$) positron emission tomography (PET)-computed tomography (CT) ($^{18}F-FDG$ PET-CT) would be associated with local immune responses evaluated according to the presence of tumor infiltrating lymphocytes (TILs). Materials and Methods: We retrospectively reviewed 56 patients who underwent $^{18}F-FDG$ PET-CT prior to gastrectomy. In resected tumor specimens, TIL subsets, including cluster of differentiation (CD) 3, CD4, CD8, Forkhead box P3 (Foxp3), and granzyme B, were subjected to immunohistochemical analysis. The prognostic nutritional index (PNI) was calculated as: ($10{\times}serum$ albumin value)+($0.005{\times}peripheral$ lymphocyte counts). Additionally, the maximum standard uptake value ($SUV_{max}$) was calculated to evaluate the metabolic activity of cancer cells. Results: The $SUV_{max}$ was positively correlated with larger tumor size (R=0.293; P=0.029) and negatively correlated with PNI (R=-0.407; P=0.002). A higher $SUV_{max}$ showed a marginal association with higher CD3 (+) T lymphocyte counts (R=0.227; P=0.092) and a significant association with higher Foxp3 (+) T lymphocyte counts (R=0.431; P=0.009). No other clinicopathological characteristics were associated with $SUV_{max}$ or TILs. Survival analysis, however, indicated that neither $SUV_{max}$ nor Foxp3 held prognostic significance. Conclusions: FDG uptake on PET-CT could be associated with TILs, especially regulatory T cells, in gastric cancer. This finding may suggest that PET-CT could be of use as a non-invasive tool for monitoring the tumor microenvironment in patients with gastric cancer.

Assessment of Tumor Response to Therapy in Lymphoma Using $^{18}F$-FDG PET: Diagnostic Performance of $^{18}F$-FDG PET and Interval Likelihood Ratio PET and Interval Likelihood Ratio ($^{18}F$-FDG PET을 이용한 림프종 치료 반응 평가: $^{18}F$-FDG PET의 진단 성능 특성과 구간 우도비)

  • Kim, Chang-Guhn;Kim, Dae-Weung;Park, Moo-Rim
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.369-385
    • /
    • 2009
  • In this paper, the authors intended to summarize briefly the features of lymphoma with regard to $^{18}F$-FDG PET for assessment of tumor response to therapy, to describe why assessment of treatment response should be performed, to review what method so far has been used in monitoring treatment response, to discuss what limitations of morphologic imaging criteria for assessing tumor response are, in compared with $^{18}F$-FDG PET, and to introduce recently proposed criteria for assessing tumor response in malignant lymphoma. And also the authors emphasize the need to understand the characteristics of diagnostic performance of $^{18}F$-FDG PET in several clinical settings in order to interpret $^{18}F$-FDG PET results appropriately, and to encourage the use of interval likelihood ratio to enhance clinical implications of test results which, in turns, allows referring physicians to understand the meaning of interpretation with easy. Until recently, treatment response has been assessed according to the morphologic criteria. Metabolic imaging with $^{18}F$-FDG PET was adopted to have important role for treatment assessment in IWC+PET criteria proposed recently by IHP. To accomplish this role, we should perform and interpret $^{18}F$-FDG PET according to IWC+PET criteria. It is important for referring physicians to understand the various limitations of $^{18}F$-FDG PET and pitfalls in PET interpretation, and to understand that clinical information are needed by nuclear medicine physicians to optimize the interpretation of $^{18}F$-FDG PET.

Association between Bone Marrow Hypermetabolism on 18F-Fluorodeoxyglucose Positron Emission Tomography and Response to Chemotherapy in Non-Small Cell Lung Cancer (비소세포폐암 환자의 양전자방출 단층촬영에서 골수 대사활성도의 항암화학요법에 대한 반응 예측)

  • Seol, Hee Yun;Mok, Jeong Ha;Yoon, Seong Hoon;Kim, Ji Eun;Kim, Ki Uk;Park, Hye-Kyung;Kim, Seong Jang;Kim, Yun Seong;Lee, Min Ki;Park, Soon Kew
    • Tuberculosis and Respiratory Diseases
    • /
    • v.66 no.1
    • /
    • pp.20-26
    • /
    • 2009
  • Background: $^{18}F$-Fluorodeoxyglucose positron emission tomography (FDG-PET) is widely used for the diagnosis and staging of non-small cell lung cancer (NSCLC). The aim of this study is to determine whether the bone marrow hypermetabolism seen on FDG-PET predicts a response to chemotherapy in patients with NSCLC. Methods: We evaluated the patients with advanced NSCLC and who were treated with combination chemotherapy. For determination of the standardized uptake value (SUV) of the bone marrow (BM SUV) on FDG-PET, regions of interest (ROIs) were manually drawn over the lumbar vertebrae (L1, 2, 3). ROIs were also drawn on a homogenous transaxial slice of the liver to obtain the bone marrow/ liver SUV ratio (BM/L SUV ratio). The response to chemotherapy was evaluated according to the Response Evaluation Criteria in Solid Tumor (RECIST) criteria after three cycles of chemotherapy. Results: Fifty-nine NSCLC patients were included in the study. Multivariate analysis was performed using a logistic regression model. The BM SUV and the BM/L SUV ratio on FDG-PET were not associated with a response to chemotherapy in NSCLC patients (p=0.142 and 0.978, respectively). Conclusion: The bone marrow hypermetabolism seen on FDG-PET can not predict a response to chemotherapy in NSCLC patients.

Chelators for 68Ga radiopharmaceuticals

  • Seelam, Sudhakara Reddy;Lee, Yun-Sang;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.2 no.1
    • /
    • pp.22-36
    • /
    • 2016
  • $^{68}Ga$ is a promising radionuclide for positron emission tomography (PET). It is a generator-produced ($^{68}Ge/^{68}Ga$-generator) radionuclide with a half-life of 68 min. The employment of $^{68}Ga$ for basic research and clinical applications is growing exponentially. Bifunctional chelators (BFCs) that can be efficiently radiolabeled with $^{68}Ga$ to yield complexes with good in vivo stability are needed. Given the practical advantages of $^{68}Ga$ in PET applications, gallium complexes are gaining increasing attention in biomedical imaging. However, new $^{68}Ga$-labeled radiopharmaceuticals that can replace $^{18}F$-labeled agents like [$^{18}F$]fluorodeoxyglucose (FDG) are needed. The majority of $^{68}Ga$-labeled derivatives currently in use consist of peptide agents, but the development of other agents, such as amino acid or nitroimidazole derivatives and glycosylated human serum albumin, is being actively pursued in many laboratories. Thus, the availability of new $^{68}Ga$-labeled radiopharmaceuticals with high impact is expected in the near future. Here, we present an overview of the different new classes of chelators for application in molecular imaging using $^{68}Ga$ PET.

Diagnostic Efficacy of PET in Soft Tissue Tumors: Comparative Study with Conventional Methods (연부 조직 종양에서 PET의 유용성: 기존의 진단법과의 비교 연구)

  • Seo, Sung-Wook;Park, Sang-Min;Cho, Hwan-Seong
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.11 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • Introduction: Currently, F-18 fluorodeoxyglucose positron emission tomography scans (FDG-PET) has been investigated in soft tissue tumor especially for tumor detection and noninvasive grading. However, the validity and the efficacy of FDG-PET are still unclear in clinical evaluation. The purpose of this study is to determine the efficacy of FDG-PET in compared to conventional diagnostic imaging studies currently used in the soft tissue tumor. Methods: Between March 2001 and March 2002, 29 patients (sixteen males, thirteen females, mean age, 47 years; a range from 4 to 73) diagnosed with soft tissue tumor were evaluated by both conventional diagnostic imaging and FDG-PET. Valid reference test of the local lesion was the histopathologic diagnosis, which was measured in all patients. The suspecting metastasis in the imaging studies was validated by pathology or follow up imaging for at least 6 months. Each imaging diagnosis was made independently. The accuracy of each diagnostic method was evaluated. The incremental cost accuracy ratio was determined in each diagnostic method. Results: For detection of local lesion, sensitivity, specificity, and accuracy for MRI and FDGPET scans were 91%, 57%, 83% and 95%, 43%, 83% respectively. For detection of distant lesion, sensitivity, specificity, accuracy for conventional diagnostic methods and FDG-PET scans were 77%, 89%, 87% and 92%, 94%, 93% respectively. The incremental cost accuracy ratio (ICAR) of FDG-PET for detection of distant lesion was 145,000won/%. According to ICAR for each tumor grade, PET strategy is most cost-effective at high grade tumors. Conclusions: For detection of local lesion such as recurrence or remnant tumor, FDG-PET scan was not more accurate than MRI. However, It was more accurate for detection of metastatic lesion than conventional methods. For detection of high grade tumor, PET was most costeffective than for detection of lower grade tumor.

  • PDF