• Title/Summary/Keyword: $^{18}$F-FDG

Search Result 541, Processing Time 0.03 seconds

Interobserver and Intraobserver Reproducibility of SUL Measurements in Reference Organs on FDG PET/CT (FDG PET/CT 검사 시 참고장기에서 측정한, 제지방체중으로 표준화한 표준화 섭취계수의 관찰자 사이 및 관찰자 내 재현성에 대한 연구)

  • Kim, Seong Su;Shin, Yong Cheol;Lee, Sun Do;Lee, Nam Ju;Kim, Jong Cheol;Lee, Chun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: The use of SUV which should be normalized by lean body mass (LBM) is recommended for PET response criteria in solid tumors. LBM which was determined by whole body CT was used for SUV normalization (SUL) in this study. The purpose of the present study was to assess interobserver and intraobserver reproducibility of SUL measurements in reference organs. Materials and Methods: F-18 FDG PET/CT was conducted on 52 subjects and LBMs were directly determine by whole body CT for normalization of SUV. The 3 cm diameter spherical VOI, $1\times2$ cm cylindrical VOI, 2 cm diameter spherical VOI were placed in the liver, descending aorta and spleen, respectively. Experienced two observers measured SULmax and SULmean in each organ. Repeated measurements were conducted two weeks apart by observer 1 blind to previous results. Similarly, measurements were conducted on the same patients by observer 2. For assessing reproducibility(or repeatability), the paired t-test, Pearson's correlation coefficients (CC), and technical error of measurement (TEM) were calculated. Results: For interobserver reproducibility in liver SULmax and SULmean, no significant differences were found between observers(paired t-test, P=0.536, 0.293, respectively). CC and TEM for liver SULmean were 0.909 (P=0.000) and 0.067 SUL unit, respectively. Corresponding figures for liver SULmax were 0.882 (P=0.000) and 0.117 SUL unit, respectively. For intraobserver reproducibility in liver SULmax and SULmean, no significant differences were observed within observer1 (paired t-test, P=0.374, 0.268, respectively). CC and TEM for liver SULmean were 0.924 (P=0.000) and 0.061 SUL, respectively. Corresponding figures for liver SULmax were 0.908 (P=0.000) and 0.104 SUL, respectively. Similarly, no significant differences were found in SULmax and SULmean of the spleen and aorta between observers. Conclusion: The current study demonstrated that both SULmean and SULmax measurements in normal reference organs are highly reproducible. Reproducibility of SULmean in reference organs were slightly better than SULmax. Interobsever technical error of measurement was less than 0.10 SUL unit for liver SULmean, and 0.12 SUL unit for liver SULmax. Intraobsever technical error of measurement was less than 0.07 SUL unit for liver SULmean, and 0.11 SUL unit for liver SULmax.

  • PDF

Evaluation of Standardized Uptake Value and Metabolic Tumor Volume between Reconstructed data and Re-sliced data in PET Study (PET 검사 시 Reconstructed data와 Re-sliced data의 표준섭취계수와 Metabolic Tumor Volume의 비교 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.3-8
    • /
    • 2016
  • Purpose SUV is one of the parameters that assist diagnosis in origin, metastasis and staging of cancer. Specially, it is important to compare SUV before and after chemo or radiation therapy to find out effectiveness of treatment. Storing PET data which has no quantitative change is needed for SUV comparison. However, there is a possibility to loss the data in external hard drive or MINIpacs that are managed by department of nuclear medicine. The aim of this study is to evaluate SUV and metabolic tumor volume (MTV) among reconstructed data (R-D) in workstation, R-D and re-sliced data (S-D) in PACS. Materials and Methods Data of 20 patients (aged $60.5{\pm}8.3y$) underwent $^{18}F-FDG$ PET (Biograph truepoint 40, mCT 40, mCT 64, mMR, Siemens) study were analysed. $SUV_{max}$, $SUV_{peak}$ and MTV were measured in liver, aorta and tumor after sending R-D in workstation, R-D and S-D in PACS to syngo.via software. Results R-D of workstation and PACS showed the same value as mean $SUV_{max}$ in liver, aorta and tumor were $2.95{\pm}0.59$, $2.35{\pm}0.61$, $10.36{\pm}6.15$ and $SUV_{peak}$ were $2.70{\pm}0.51$, $2.07{\pm}0.43$, $7.67{\pm}3.73$(p>0.05) respectively. Mean $SUV_{max}$ of S-D in PACS were decreased by 5.18%, 7.22%, 12.11% and $SUV_{peak}$ 2.61%, 3.63%, 10.07%(p<0.05). Correlation between R-D and S-D were $SUV_{max}$ 0.99, 0.96, 0.99 and $SUV_{peak}$ 0.99, 0.99, 0.99. And 2SD in balnd-altman analysis were $SUV_{max}$ 0.125, 0.290, 1.864 and $SUV_{peak}$ 0.053, 0.103, 0.826. MTV of R-D in workstation and PACS show the same value as $14.21{\pm}12.72cm^3$(p>0.05). MTV in PACS was decreased by 0.12% compared to R-D(p>0.05). Correlation and 2SD between R-D and S-D were 0.99 and 2.243. Conclusion $SUV_{max}$, $SUV_{peak}$, MTV showed the same value in both of R-D in workstation and PACS. However, there was statistically difference in $SUV_{max}$, $SUV_{peak}$ of S-D compare to R-D despite of high correlation. It is possible to analyse reliable pre and post SUV if storing R-D in main hospital PACS system.

  • PDF

Usefulness of Stomach Extension after Drinking Orange Juice in PET/CT Whole Body Scan (PET/CT 전신 영상에서 오렌지 주스(Orange Juice)를 이용한 위장 확장 영상의 유용성)

  • Cho, Seok-Won;Chung, Seok;Oh, Shin-Hyun;Park, Hoon-Hee;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.86-92
    • /
    • 2009
  • Purpose: The PET/CT has a clear distinction on the lesion of the functional image by adding anatomical information. It also could reduce the examination time using CT data as the attenuation-correction. When the stomach was contracted from a fast, it could bring a misinterpretation of the cancer of the lesion with a presence of physiological $^{18}F$-FDG uptake in stomach and it occasionally would bring an additional scan to confirm. To complement this shortcoming, the method that the patients had water before the examination to extend the stomach had been attempted. However, a short excretion time of the stomach did not give sufficiently extended image of the stomach. Then the patients had additional water and had the examination again. Therefore, the noticed fact is that the stomach excretion time depends on calories, protein content, and the level of carbohydrate. In this study, we use an orange juice to evaluate the extension of the stomach and usefulness of it. Materials and Methods: PET/CT scan were obtained on total 150 of patient from February 2008 to October2008, There were 3 groups in this study and each group had 50 patients. First group drank nothing, Second group drank water and third group drank orange juice. The patients (man 25, female 25) not drinking are the age of 30~71 years old (average: 54), the patients (man: 25, female: 25) drinking water (400 cc) are the age of 28~71 years old (average: 54) and the patients (man: 25, female: 25) drinking orange juice (400 cc) are the age of 32~74 years old (average: 56). The patients were fasted in 6-8 hours before the test, the patients were not diabetic. $^{18}F$-FDG 370~555 MBq were injected intravenously. The patients were in stable position for 1 hour, than the image was obtained. The patients drank water and other patients drank orange juice before Whole body scan. The image scan started from mid-femur to skull base. The emission scan acquired for three minutes per bed and the images were reconstructed. Stomach extension analysis is measured from vertical and horizontal length. Results: Stomach Extension was described as the vertical length of the Non Drink Group was $1.20{\pm}0.50\;cm$, horizontal length was $1.4{\pm}0.53\;cm$, the vertical length of the Water Drink Group was $1.67{\pm}0.63\;cm$, horizontal length was $1.65{\pm}0.77\;cm$, the vertical length of Orange juice Drink Group was $3.48{\pm}0.77\;cm$, horizontal length was $3.66{\pm}0.77\;cm$ in coronal image. Stomach Extension was described the vertical length of the Non Drink Group was $2.03{\pm}0.62\;cm$, horizontal length was $1.69{\pm}0.68\;cm$, the vertical length of Water Drink Group was $5.34{\pm}1.62\;cm$, horizontal length was $2.45{\pm}0.72\;cm$, the vertical length of Orange juice Drink Group was $7.74{\pm}1.62\;cm$, horizontal length was $3.57{\pm}0.77\;cm$ in transverse image. The Stomach Extension has specific differences (p<0.001). The SUVs shows the Non Drink Group were measured as Liver $2.52{\pm}0.42$, Lung $0.51{\pm}0.14$, the Water Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$, Orange juice Drink Group were measured as Liver $2.47{\pm}0.38$, Lung $0.50{\pm}0.14$. The SUVs did not have specific differences (p>0.759). Conclusions: There was not a large difference of SUV in three groups. When the patients drank Orange juice and water, the range extension of stomach was higher than without drinking nothing and it was possible to acquire fully extended images. Therefore, it will be possible that unnecessary additional stomach scans will be reduced by drinking orange juice before the examination so that the patients' claim from uncomfortable and long period of fast will be minimized.

  • PDF

An Effective Block of Radioactive Gases for the Storage During the Synthesis of Radiopharmaceutical (방사성의약품 합성에서 발생하는 방사성기체의 효율적 차단)

  • Chi, Yong Gi;Kim, Dong Il;Kim, Si Hwal;Won, Moon Hee;Choe, Seong-Uk;Choi, Choon Ki;Seok, Jae Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.126-130
    • /
    • 2012
  • Purpose : Methode an effective block was investigated to deal with volatile radioactive gas, short lived radioactive waste generated as a result of the routinely produced radiopharmaceuticals FDG (2-deoxy-2-[$^{18}F$]fluoro-D-glucose) and compound with $^{11}C$. Materials and Methods : All components of the radiation stack monitoring and data management system for continuous radioactive gas detection in the air extract system purchase from fixed noble gas monitor of Berthold company. TEDLAR gas sampling bags purchase from the Dongbanghitech company. TEDLAR gas sampling bags (volume: 10 L) connected via paraflex or PTFE tubing and Teflon 3 way stopcock. When installing TEDLAR gas sampling bags in Hot cell on the inside and not radioactive gas concentrations were compared. According to whether the Hot cell inside a activated carbon filter installed, compare the difference in concentration of the radioactive gas $^{18}F$. Comparison of radiation emission concentration difference of module a FASTlab and TRACElab. Results : Activated carbon filter are installed in the Hot cell, a measure of the concentration of radioactive gas was 8 $Bq/m^3$. Without activated carbone filter in the hot cell was 300 $Bq/m^3$. Tedlar bag prior to installation of the radioactive gases a measure of the concentration was 3,500 $Bq/m^3$, $^{11}C$ synthesis of the measured concentration was 27,000 $Bq/m^3$. After installed a Tedlar bag and a measure concentration of the radioactive gases was 300 $Bq/m^3$ and $^{11}C$ synthesis was 1,000$Bq/m^3$. Conclusion : $^{11}C$ radioactive gas that was ejected out of the Hot cell, with the use of a Tedlar gas sampling bag stored inside. A compound of 11C is not absorbed onto activated carbon filter. But can block the release out by storing in a Tedlar gas sampling bag. We was able to reduce the radiation exposure of the worker by efficient radiation protection.

  • PDF

Production of $^{11}C$ labeled Radiopharmaceuticals using $[^{11}C]CO_2$ Produced in the KOTRON-13 (한국형 사이클로트론(KOTRON-13)을 이용한 $[^{11}C]CO_2$ 생산과 다양한 $^{11}C$-표지 방사성의약품 생산 적용)

  • Lee, Hong Jin;Park, Jun Hyung;Moon, Byung Seok;Lee, In Won;Lee, Byung Chul;Kim, Sang Eun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.106-109
    • /
    • 2012
  • Purpose : The KOTRON-13 cyclotron was developed and installed in regional cyclotron centers to produce short-lifetime medical radioisotopes. However, this cyclotron has limited capacity to produce $^{11}C$ so far. In present study, we developed an effective $^{11}C$ target system combining with fluorine-18 target and applied to the production of various $^{11}C$ radiopharmaceuticals. Materials and Methods : To develop the optimal $^{11}C$ target system and effective its cooling system, we designed the $^{11}C$ target system by Stopping and Range of Ions in Matter (SRIM) simulation program and considered the cavity pressure during irradiation at target grid. In this investigation, we modified target materials, cavity shapes and the position of cooling system in $^{11}C$ target and then evaluated $[^{11}C]CO_2$ production at different beam currents, thickness of the target foil, oxygen content of nitrogen gas and target gas loading pressure. Also, we evaluate the production of several $^{11}C$ radiopharmaceuticals such as [$^{11}C$]PIB, [$^{11}C$]DASB, and [$^{11}C$]Clozapine. Results : $[^{11}C]CO_2$ was produced about 74 GBq for 30min irradiation at 60 ${\mu}A$ of beam current as following conditions: thickness of the target foil: 19 nm HAVAR, oxygen content of nitrogen: under 50 ppb, target gas loading pressure: 24 bar. Additionally, the cooling system was stable to produce $[^{11}C]CO_2$ at high beam current. The radiochemical yields of [$^{11}C$]PIB, [$^{11}C$]DASB, and [$^{11}C$]Clozapine showed about 26-38% with over 127 GBq/umol of specific activity. Conclusion : The carbon-11 target system in the KOTRON-13 cyclotron was successfully developed and showed stable production of $[^{11}C]CO_2$. These results showed that our $^{11}C$ target system will be compatible with other commercial system for the routine $^{11}C$ radiopharmaceuticals production in the KOTRON-13 cyclotron.

  • PDF

Image Comparative Evaluation by PET/CT Equipment Using Phantom (팬텀을 활용한 PET/CT 장비 별 영상 비교 평가)

  • Moo-Jin Jeong;Jun-Chul Ham;Yong-Hoon Choi;Young-Kag Bahn;Han-Sang Lim;Jae-Sam Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • Purpose: This study aims to identify SUV, SNR, spatial resolution, and axial uniformity under the same reconstruction conditions and to find out the differences between equipment models. Materials and Methods: The equipment was GE's Discovery 600, 710, IQ, MI(GE Healthcare, USA), and the Phantom used ACR(American College of Radiology) Flangeless Esser Phantom and PET/SPECT Performance Phantom. The PET/SPECT Performance Phantom injected 18F-FDG at a concentration of 3.8 kBq/mL, and the ACR Flangeless Esser Phantom made the conditions for Hot Spot and Background activity for 4 : 1. Image evaluation was compared and evaluated for SUV, SNR, spatial resolution, and axial uniformity with the same reconstruction that added SharpIR of VPHD. Results: The SUVmax showed a difference up to 4.6% with an average of 2.71, 2.35, 1.89, and 1.43 from Hot Spot 1 to 4, and the SUVmean showed a difference up to 4.7% with 2.06, 1.75, 1.49, and 1.27. There was a difference up to 5% between equipment, and there was no significant difference between both SUVmax and SUVmean. SNR showed a difference up to 0.04 with an average of 0.37, 0.26, 0.18, and 0.11. FWHM showed a difference up to 0.27. Lastly, COV of axial uniformity was up to 0.018. Conclusion: SUV showed differences within 5% between equipment and showed no significant difference. This is considered to be used as basic data that can be used for the development and replacement of equipment because it has the advantage of being able to observe with a large number of equipment.

Evaluation of the Image Quality According to the Pre-set Method in PET/CT Image (PET/CT 영상 획득 시 사전설정법 차이에 따른 영상 질 평가)

  • Park, Sun-Myung;Lee, Hyuk;Hong, Gun-Chul;Chung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2011
  • Purpose: The result of exam using an imaging device is very closely related with the image quality. Moreover, this image quality can be changed according to the condition of image acquisition and evaluation method. In this study, we evaluated the image quality according to the difference of pre-set method in PET/CT image. Materials & Methods: PET/CT Discovery STe16 (GE Healthcare, Milwaukee, USA), Chest PET phantom (Experiment 1) and 94 NEMA phantom (Experiment 2) were used. Phantom were filled with $^{18}F$-FDG maintaining hot sphere and background ratio to 4:1. In the case of experiment 1, we set the radio activity concentration on 3.5, 6.0, 8.6 kBq/mL. In the case of experiment 2, we set the radio activity concentration on 3.3, 5.5, 7.7, 9.9, 12.1, 16.5 kBq/mL. All experiments were performed with the time-set method for 2 minutes 30 seconds per frame and the count-set method with one hundred million counts in 3D mode after CT transmission scan. For the evaluation of the image quality, we compared each results by using the NECR and SNR. Results: In the experiment 1, both the NECR and SNR were increased as radioactivity concentration getting increased. The NECR was shown as 53.7, 66.9, 91.4. and SNR was shown as 7.9, 10.0, 11.7. Both the NECR and SNR were increased in time-set method. But the count-set method's pattern was not similar with the time-set method. The NECR was shown as 53.8, 69.1, 97.8, and SNR was shown as 14.1, 14.7 14.4. The SNR was not increased in count-set method. In experiment 2, results of both the NECR and SNR were shown as 45.1, 70.6, 95.3, 115.6, 134.6, 162.2 and 7.1, 8.8, 10.6, 11.5, 12.7, 14.0. These results were shown similar patten with the experiment 1. Moreover, when the count-set method was applied, the NECR was shown as 42.1, 67.3, 92.1, 112.2, 130.7, 158.7, and SNR was shown as 15.2, 15.9, 15.6, 15.4, 15.5, 14.9. The NECR was increased but SNR was not shown same pattern. Conclusion: Increment of administered radioactivity improves the quality of image unconcerned with the pre-set method. However, NECR was not influenced by increment of total acquisition counts through simple increasing scan duration without increment of administered activity. In case of count-set method, the SNR was shown similar value despite of increment of radioactivity. So, the administered activity is more important than the scan duration. And we have to consider that evaluation of image quality using only SNR may not be appropriate.

  • PDF

The Evaluation of Reconstruction Method Using Attenuation Correction Position Shifting in 3D PET/CT (PET/CT 3D 영상에서 감쇠보정 위치 변화 방법을 이용한 영상 재구성법의 평가)

  • Hong, Gun-Chul;Park, Sun-Myung;Jung, Eun-Kyung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.172-176
    • /
    • 2010
  • Purpose: The patients' moves occurred at PET/CT scan will cause the decline of correctness in results by resulting in inconsistency of Attenuation Correction (AC) and effecting on quantitative evaluation. This study has evaluated the utility of reconstruction method using AC position changing method when having inconsistency of AC depending on the position change of emission scan after transmission scan in obtaining PET/CT 3D image. Materials and Methods: We created 1 mL syringe injection space up to ${\pm}2$, 6, 10 cm toward x and y axis based on central point of polystyrene ($20{\times}20110$ cm) into GE Discovery STE16 equipment. After projection of syringe with $^{18}F$-FDG 5 kBq/mL, made an emission by changing the position and obtained the image by using AC depending on the position change. Reconstruction method is an iteration reconstruction method and is applied two times of iteration and 20 of subset, and for every emission data, decay correction depending on time pass is applied. Also, after setting ROI to the position of syringe, compared %Difference (%D) at each position to radioactivity concentrations (kBq/mL) and central point. Results: Radioactivity concentrations of central point of emission scan is 2.30 kBq/mL and is indicated as 1.95, 1.82 and 1.75 kBq/mL, relatively for +x axis, as 2.07, 1.75 and 1.65 kBq/mL for -x axis, as 2.07, 1.87 and 1.90 kBq/mL for +y axis and as 2.17, 1.85 and 1.67 kBq/mL for -y axis. Also, %D is yield as 15, 20, 23% for +x axis, as 9, 23, 28% for -x axis, as 12, 21, 20% for +y axis and as 8, 22, 29% for -y axis. When using AC position changing method, it is indicated as 2.00, 1.95 and 1.80 kBq/mL, relatively for +x axis, as 2.25, 2.15 and 1.90 kBq/mL for -x axis, as 2.07, 1.90 and 1.90 kBq/mL for +y axis, and as 2.10, 2.02, and 1.72 kBq/mL for -y axis. Also, %D is yield as 13, 15, 21% for +x axis, as 2, 6, 17% for -x axis, as 9, 17, 17% for +y axis, and as 8, 12, 25% for -y axis. Conclusion: When in inconsistency of AC, radioactivity concentrations for using AC position changing method increased average of 0.14, 0.03 kBq/mL at x, y axis and %D was improved 6.1, 4.2%. Also, it is indicated that the more far from the central point and the further position from the central point under the features that spatial resolution is lowered, the higher in lowering of radioactivity concentrations. However, since in actual clinic, attenuation degree increases more, it is considered that when in inconsistency, such tolerance will be increased. Therefore, at the lesion of the part where AC is not inconsistent, the tolerance of radioactivity concentrations will be reduced by applying AC position changing method.

  • PDF

The Effect of PET/CT Images on SUV with the Correction of CT Image by Using Contrast Media (PET/CT 영상에서 조영제를 이용한 CT 영상의 보정(Correction)에 따른 표준화섭취계수(SUV)의 영향)

  • Ahn, Sha-Ron;Park, Hoon-Hee;Park, Min-Soo;Lee, Seung-Jae;Oh, Shin-Hyun;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.77-81
    • /
    • 2009
  • Purpose: The PET of the PET/CT (Positron Emission Tomography/Computed Tomography) quantitatively shows the biological and chemical information of the body, but has limitation of presenting the clear anatomic structure. Thus combining the PET with CT, it is not only possible to offer the higher resolution but also effectively shorten the scanning time and reduce the noises by using CT data in attenuation correction. And because, at the CT scanning, the contrast media makes it easy to determine a exact range of the lesion and distinguish the normal organs, there is a certain increase in the use of it. However, in the case of using the contrast media, it affects semi-quantitative measures of the PET/CT images. In this study, therefore, we will be to establish the reliability of the SUV (Standardized Uptake Value) with CT data correction so that it can help more accurate diagnosis. Materials and Methods: In this experiment, a total of 30 people are targeted - age range: from 27 to 72, average age : 49.6 - and DSTe (General Electric Healthcare, Milwaukee, MI, USA) is used for equipment. $^{18}F$- FDG 370~555 MBq is injected into the subjects depending on their weight and, after about 60 minutes of their stable position, a whole-body scan is taken. The CT scan is set to 140 kV and 210 mA, and the injected amount of the contrast media is 2 cc per 1 kg of the patients' weight. With the raw data from the scan, we obtain a image showing the effect of the contrast media through the attenuation correction by both of the corrected and uncorrected CT data. Then we mark out ROI (Region of Interest) in each area to measure SUV and analyze the difference. Results: According to the analysis, the SUV is decreased in the liver and heart which have more bloodstream than the others, because of the contrast media correction. On the other hand, there is no difference in the lungs. Conclusions: Whereas the CT scan images with the contrast media from the PET/CT increase the contrast of the targeted region for the test so that it can improve efficiency of diagnosis, there occurred an increase of SUV, a semi-quantitative analytical method. In this research, we measure the variation of SUV through the correction of the influence of contrast media and compare the differences. As we revise the SUV which is increasing in the image with attenuation correction by using contrast media, we can expect anatomical images of high-resolution. Furthermore, it is considered that through this trusted semi-quantitative method, it will definitely enhance the diagnostic value.

  • PDF

Clinical outcomes of adjuvant radiation therapy and prognostic factors in early stage uterine cervical cancer

  • Kim, Hyun Ju;Rhee, Woo Joong;Choi, Seo Hee;Nam, Eun Ji;Kim, Sang Wun;Kim, Sunghoon;Kim, Young Tae;Kim, Gwi Eon;Kim, Yong Bae
    • Radiation Oncology Journal
    • /
    • v.33 no.2
    • /
    • pp.126-133
    • /
    • 2015
  • Purpose: To evaluate the outcomes of adjuvant radiotherapy (RT) and to analyze prognostic factors of survival in the International Federation of Gynecology and Obstetrics (FIGO) IB-IIA uterine cervical cancer. Materials and Methods: We retrospectively reviewed the medical records of 148 patients with FIGO IB-IIA uterine cervical cancer who underwent surgery followed by adjuvant RT at the Yonsei Cancer Center between June 1997 and December 2011. Adjuvant radiotherapy was delivered to the whole pelvis or an extended field with or without brachytherapy. Among all patients, 57 (38.5%) received adjuvant chemotherapy either concurrently or sequentially. To analyze prognostic factors, we assessed clinicopathologic variables and metabolic parameters measured on preoperative 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT). To evaluate the predictive performance of metabolic parameters, receiver operating characteristic curve analysis was used. Overall survival (OS) and disease-free survival (DFS) were analyzed by the Kaplan-Meier method. Results: The median follow-up period was 63.2 months (range, 2.7 to 206.8 months). Locoregional recurrence alone occurred in 6 patients, while distant metastasis was present in 16 patients, including 2 patients with simultaneous regional failure. The 5-year and 10-year OSs were 87.0% and 85.4%, respectively. The 5-year and 10-year DFSs were 83.8% and 82.5%, respectively. In multivariate analysis, pathologic type and tumor size were shown to be significant prognostic factors associated with both DFS and OS. In subset analysis of 40 patients who underwent preoperative PET/CT, total lesion glycolysis was shown to be the most significant prognostic factor among the clinicopathologic variables and metabolic parameters for DFS. Conclusion: Our results demonstrated that adjuvant RT following hysterectomy effectively improves local control. From the subset analysis of preoperative PET/CT, we can consider that metabolic parameters may hold prognostic significance in early uterine cervical cancer patients. More effective systemic treatments might be needed to reduce distant metastasis in these patients.