• Title/Summary/Keyword: $^{13}C$-NMR

Search Result 1,327, Processing Time 0.029 seconds

Quinolone Alkaloids from Evodiae fructus Inhibit LFA-1/ICAM-1-mediated Cell Adhesion

  • Lee, Seung-Woong;Chang, Jong-Sun;Lim, Ju-Hwan;Kim, Min-Seok;Park, Su-Jin;Jeong, Hyung-Jae;Kim, Min-Soo;Lee, Woo-Song;Rho, Mun-Chual
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.64-68
    • /
    • 2010
  • Four quinolone alkaloids were isolated by bioactivity-guided fractionation from the methanol extracts of Evodiae fructus fruits. Structures of compounds were elucidated by spectroscopic analysis ($^1H$-, $^{13}$C-NMR and MS), as follows: 1-methyl-2-undecyl-4(1H)-quinolone (1), evocarpine (2), dihydroevocarpine (3) and mixture of [1-methyl-2-[(Z)-10-pentadecenyl]-4(1H)-quinolone and 1-methyl-2-[(Z)-6-pentadecenyl]-4(1H)-quinolone] (4). They inhibited the interaction of sICAM-1 and LFA-1 in THP-1 cells at $IC_{50}$ values of >150 (1), 109.8 (2), >150 (3) and $40.9 {\mu}M$ (4), respectively,

Cyclopolymerization of 1,1-Dipropargyl-1-silacyclohexane by Transition Metal Catalysts

  • Gal, Yeong-Soon;Lee, In-Sook;Chang, Eun-Hee;Jeong, Yun-Cheol;Kwak, Young-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1305-1310
    • /
    • 2007
  • A conjugated spirocyclic polymer was synthesized via the cyclopolymerization of 1,1-dipropargyl-1- silacyclohexane with various transition metal catalysts. The monomer, 1,1-dipropargyl-1-silacyclohexane was synthesized by Grignard reaction of 1,1-dichloro-1-silacyclohexane with propargyl magnesium bromide. This polymerization proceeded well to give the corresponding poly(1,1-dipropargyl-1-silacyclohexane). The catalytic activity of WCl6 was found to be similar with that of MoCl5. The structure of polymer having the conjugated backbone with silacyclohexane moieties was characterized by such instrumental methods as NMR (1H-, 13C-), IR, and UV-visible spectroscopies. The resulting polymers were mostly yellow or light-brown powders, depending on the catalyst systems used. This polymer was completely soluble in halogenated and aromatic hydrocarbons such as chloroform, 1,2-dichloromethane, benzene, toluene, and chlorobenzene, etc. The thermal and oxidative stabilities of polymer were also studied and discussed.

Preparation and Characterization of Half-Sandwich Cobalt(III) Complexes of Cp Ligands with a Rigid Thioanisole Side-Chain

  • S, Sujith;Lee, Bun-Yeoul;Han, Jin-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1299-1304
    • /
    • 2007
  • New sulfur functionalized cyclopentadiene ligands, 1-[2-(thioanisole)]-2,5-dimethylcyclopentadiene (3), 1-[2- (thioanisole)]-2,3,5-trimethylcyclopentadiene (4), and 1-[2-(thioanisole)]-2,3,4,5-tetramethylcyclopentadiene (5), were prepared. In these ligands, the S-donor atom is connected to a cyclopentadiene ring by a rigid phenylene spacer. CpCo(III)-diiodo half-sandwich complexes (6-8) were obtained from reaction the ligands (3- 5) with Co2(CO)8, followed by treatment of I2. Substitution reaction of CpCo(III)-diiodo complexes with MeLi yielded the corresponding CpCo(III)-dimethyl complexes (9-11). Further transformation to the corresponding cationic cobalt complexes (12-14) were achieved by reaction of the CpCo(III)-dimethyl complexes with HB(ArF)4·2Et2O and trapping with CD3CN. The new sulfur functionalized cyclopentadiene ligands having a rigid phenylene spacer and the corresponding cobalt complexes were characterized by 1H, 13C and 19F NMR spectroscopy. The diiodo Complex 6 was also characterized by a single crystal X-ray diffraction method.

Synthesis of UV-Curable Modified (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate Acrylate (자외선 경화형 변성 (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate 아크릴레이트의 합성)

  • Lee, Jongmin;Yi, Hwanpyo;Lee, Sanggun;Park, Hyungnam;Choi, Kangsik;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate acrylate was synthesized by reacting (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate with acrylic acid to minimize hardening shrinkage and to improve heat resistance, which are known as disadvantages of photopolymers for 3D printing application. Urethane acrylate was synthesized by reacting 1,3,5-triazine-2,4,6-triamino alcohol, 2-hexylethyl acrylate, and isophorone diisocyanate in order to improve the mechanical properties without deteriorating the heat resistance. The physical properties before and after the synthesis of the acrylate and the mechanical properties when the urethane acrylate was applied were investigated. The reaction progress of the composite was examined by FTIR and $^{13}C$ NMR. The heat deflection temperature, flexural strength, and surface hardness of the molding were measured. The curing behavior by Photo-DSC ultraviolet irradiation was also examined.

Novel Macromonomer as a Reactive Stabilizer in the Dispersion Polymerization of Methylmethacrylate

  • Jung, Hye-Jun;Lee, Kang-Seok;Shim, Sang-Eun;Yang, Sun-Hye;Lee, Jung-Min;Lee, Hui-Je;Choe, Soon-Ja
    • Macromolecular Research
    • /
    • v.12 no.5
    • /
    • pp.512-518
    • /
    • 2004
  • We have synthesized a novel macromonomer of vinyl-terminated bifunctional polyurethane having a molecular weight of 37,000 g/mol and successfully applied it to the dispersion polymerization of methylmethacrylate(MMA). We verified the presence of the vinyl terminal group and the macromonomer grafted onto the poly(ethylene glycol)(PEG) block in the PMMA particles by using $^1$H and $\^$13/C NMR spectroscopies. Monodisperse PMMA microspheres that have good uniformity of 1.01 were prepared at 20 wt% macromonomer content; we investigated the characteristics of the PMMA particles in terms of their molecular weight, molecular weight distribution, size of the particles, thermal properties, and glass transition temperature. We have found that the synthesized polyurethane macromonomer is an effective stabilizer.

Identification of Phytotoxins Produced by Drechslera portulacae, a Pathogen of Purslane(Portulaca oleracea) - II. Isolation of Zeaenol and Its Herbicidal Activity (쇠비름(Porturaca oleracea)의 병원균, Drechslera portulacae가 생산하는 식물독소의 구조 동정 - 제 2 보. Zeaenol의 단리 및 제초활성)

  • Kim, K.W.
    • Korean Journal of Weed Science
    • /
    • v.14 no.3
    • /
    • pp.192-198
    • /
    • 1994
  • Zeaenol isolated from the culture filtrate of a fungal weed pathogen Drechslera portulacae, which causes necrosis on the leaves and stem of purslane (Portulaca oleracea). Its structure was determined by single-crystal x-ray diffraction method together with assignments of $^1H$ and $^{13}C$-NMR experiments. Zeaenol inhibited root length of Echinochloa crus-galli and Abutilon avicennae by 22.8% and 54.8% at $3{\times}10^{-6}M$, respectively.

  • PDF

Wewakamide A and Guineamide G, Cyclic Depsipeptides from the Marine Cyanobacteria Lyngbya semiplena and Lyngbya majuscula

  • Han, Bingnan;Gross, Harald;Mcphail, Kerry L.;Goeger, Doug;Maier, Claudia S.;Gerwick, William H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.930-936
    • /
    • 2011
  • Two new cyclic depsipeptides wewakamide A (1) and guineamide G (2) have been isolated from the marine cyanobacterium Lyngbya semiplena and Lyngbya majuscula, respectively, collected from Papua New Guinea. The amino and hydroxy acid partial structures of wewakamide A and guineamide G were elucidated through extensive spectroscopic techniques, including HR-FABMS, 1D $^1H$ and $^{13}C$ NMR, as well as 2D COSY, HSQC, HSQC-TOCSY, and HMBC spectra. The sequence of the residues of wewakamide A was determined through a combination of ESI-MS/MS, HMBC, and ROESY. Wewakamide A possesses a ${\beta}$-amino acid, 3-amino-2-methylbutanoic acid (Maba) residue, which has only been previously identified in two natural products, guineamide B (3) and dolastatin D (4). Although both new compounds (1,2) showed potent brine shrimp toxicity, only guineamide G displayed significant cytotoxicity to a mouse neuroblastoma cell line with $LC_{50}$ values of 2.7 ${\mu}M$.

The Kinetics and Mechanism of the Hydrolysis to Thienyl Chalcone Derivatives (Thienyl Chalcone 유도체의 가수분해 반응메카니즘과 그 반응속도론적 연구)

  • Hwang, Yong-Hyun;Lee, Ki-Chang;Kim, Jin-Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.73-80
    • /
    • 1993
  • The hydrolysis reaction kinetics of 2-thienyl chalcone derivatives $[II]{\sim}[V]$ was investigated by ultraviolet spectrophotometery in 20% dioxane-$H_2O$ at $25^{\circ}C$ and the structure of these compounds were ascertained by means of ultraviolet, infrared and NMR spectra. The rate equations which were applied over a wide pH range(pH $1.0{\sim}13.0$) were obtained. The substituent effects on 2-thienyl chalcone derivatives$[II]{\sim}[V]$ were studied, and the hydrolysis were facilitated by electron attracting groups. On the basis of the rate equation, substitutent effect and final product, the plausible hydrolysis reaction mechanism was proposed : At pH $1.0{\sim}9.0$, not relevant to the hydrogen ion concentration, neutral $H_2O$ molecule competitvely attacked on the double bond. By contraries, above pH 9.0, it was proportional to concentration of hydroxide ion.

The Kinetics and Mechanism of the Hydrolysis to Benzoyl Styrene Derivatives (Benzoyl Styrene 유도체의 가수분해 반응 메카니즘과 그 반응속도론적 연구)

  • Lee, Ki-Chang;Yoon, Chul-Hun;Hwang, Sung-Kwy;Oh, Se-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The Hydrolysis kinetics of Benzoyl Styrene Derivatives[I]${\sim}$[IV] was investigated by ultraviolet spectrophotometery in 5% dioxane-$H_2O$ at $40^{\circ}C$. The structure of these compounds were ascertained by means of ultraviolet, melting point, IR and NMR spectra. The rate equations which were applied over a wide pH range (pH $1.0{\sim}13.0$) were obtained. The substituent effects on Benzoyl styrene derivatives[I]${\sim}$[IV] were studied, and the hydrolysis were facilitated by electron attracting groups. On the basis of the rate equation and substitutent effect and final product, the plausible hydrolysis reaction mechanism was proposed: At pH 1.0${\sim}$pH 9.0, not relevant to the hydrogenl ion concentration, neutral $H_2O$ molecule competitively attacked on the double bond. By contrary. Above pH 9.0, It was proportional to concentration of hydroxidel ion.

Rates and Mechanism of Fading Reaction of Magenta Azomethine Dye in Basic Solution (염기성 용액에서 마젠타 아조메틴 색소의 퇴색 반응속도와 메커니즘)

  • Lee Joong-Ho;Kim Jung-Sung;Kim Chang-Su
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.711-717
    • /
    • 2005
  • A magenta azomethine dye(D) was synthesized from the reaction of 3-methyl-1-phenyl-2-pyrazoline-5-one with N,N-diethyl-1,4-phenylenediamine. The magenta azomethine dye was identified on the basis of elemental analysis, $^{13}C-NMR$, infrared, and GC/MS studies. The magenta azomethine dye was decomposed in a basic solution. Rate constants of the fading reaction of magenta azomethine dye in ethanol-water solvent were measured spectrophoto­metrically at 540 nm. Reaction rate was increased with the increase of $[OH\^{-}]\;and\;[H\_{2}O]$ in the region of $[H_{2}O]=11\~40\;M$. The reaction was governed by the following rate law. -d[D]/dt = $\{k_o\;+\;k_{OH}[OH^-][H_{2O}]\}[D]$ A possible mechanism consistent with the empirical rate law has been proposed.