• Title/Summary/Keyword: $^{129}I$

Search Result 668, Processing Time 0.032 seconds

Optimization for I-129 analytical method of radioactive waste sample using a high-temperature combustion tube furnace (고온연소로를 이용한 방사성 폐기물 내 I-129 정량 분석법 최적화 연구)

  • Chae-yeon, Lee;Jong-Myoung, Lim;Hyuncheol, Kim;Ji-Young, Park;Jin-Hong, Lee
    • Analytical Science and Technology
    • /
    • v.35 no.6
    • /
    • pp.256-266
    • /
    • 2022
  • It is important to determine the concentration of long-lived radionuclides (e.g., 129I) in nuclear waste to ensure safety when handling it. To analyze nuclides in a solid sample (e.g., concrete and soil), it is essential to effectively separate and purify the nuclides of interest in the sample. This study reports the comprehensive efforts made to validate the analytical procedure for 129I detection in solid samples, using a high-temperature combustion furnace. 129I volatilized from the sample collected in 0.01 M HNO3 solution with a reducing agent (e.g., NaHSO3) and was rapidly measured by ICP-MS. Analytical conditions, such as pyrolysis temperature and types of mobile phase gas, catalyst, and trapping solution, were optimized to obtain a high recovery rate of spiked 129I. Finally, the optimized method was applied for the simultaneous analysis of other volatile radionuclides, such as 3H and 14C. The performance test results for the optimized method confirmed that the LSC (for 3H and 14C) and ICP-MS (for 129I) measurements, with the separation of volatile nuclides using a high-temperature combustion furnace, were reliable.

The Prediction Methods of Iodine-129 release rate : Model Development

  • Park, Jin-Beak;Lee, Kun-Jai;Kang, Duck-Won;Shin, Sang-Woon;Park, Kyung-Rok
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.879-884
    • /
    • 1995
  • The results of performance assessment analyses have shown that the long-lived radionuclides such as I-129 control the potential individual dose impact to the public. I-129 is difficult-to-measure(DTM) in low-level waste because it is non-gamma emitting radionuclides and exists at extremely low concentrations in radioactive waste generated by nuclear reactors. In this study, computer modeling technique to predict release rate of I-129 is developed to provide another tools far performance assessment of land disposal facilities and characteristics of radwaste. Model suggested in this study will give conservative values of I-129 release rate far determination of radwaste characteristics. More detailed approach is implemented to account for release conditions of fuel source-nuclides. 1-131 concentration measured from reactor coolant and released fraction from tramp fuel have dominant roles in calculating release rate of I-129 with fuel defect conditions.

  • PDF

DETERMINATION OF THE 129I IN PRIMARY COOLANT OF PWR

  • Choi, Ke Chon;Park, Yong Joon;Song, Kyuseok
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • Among the radioactive wastes generated from the nuclear power plant, a radioactive nuclide such as $^{129}I$ is classified as a difficult-to-measure (DTM) nuclide, owing to its low specific activity. Therefore, the establishment of an analytical procedure, including a chemical separation for $^{129}I$ as a representative DTM, becomes essential. In this report, the adsorption and recovery rate were measured by adding $^{125}I$ as a radio-isotopic tracer ($t_{1/2}$ = 60.14 d) to the simulation sample, in order to measure the activity concentration of $^{129}I$ in a pressurized-water reactor primary coolant. The optimum condition for the maximum recovery yield of iodine on the anion exchange resins (AG1 x2, 50-100 mesh, $Cl^-$ form) was found to be at pH 7. In this report, the effect of the boron content in a pressurized-water reactor primary coolant on the separation process of $^{129}I$ was examined, as was the effect of $^3H$ on the measurement of the activity of iodine. As a result, no influence of the boron content and of the simultaneous $^3H$ presence was found with activity concentrations of $^3H$ lower than 50 Bq/mL, and with a boron concentration of less than 2,000 ${\mu}g/mL$.

Sample pre-treatment for measurement of $^{129}$I in radwastes (방사성폐기물 중 $^{129}$I 측정을 위한 시료의 전처리)

  • Ke Chon Choi;Sun Ho Han;Jee Kwang Yong;Ki Seop Choi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Many different kinds of radwastes are discharged from the nuclear power plants, and $^{129}$I is included in these radwastes. Recovery test of $^{129}$I was evaluated for different radwastes(dry active waste, sludge, spent resin and simulated evaporator bottom). Recovery of $^{129}$I for dry active waste by acid leaching with $1.8\%$ NaClO was $74.3\%$$(RSD,\;2.2\%)$ and l291 for spent rein by alkali fusion method with KOH as a flux agent was $87.7\%$$(RSD,\;0.9\%$), respectively. iodide in simulated evaporator bottom containing a high concentration of borate was adsorbed with anion exchange resin at pH 7 phosphate buffer solution. Recovery of $^{129}$I for anion exchange resin was $92.5\%$ and not affected up to 1,200 $\mu$g/mL $H_3BO)3$(as a Boron). Recovery of $^{129}$I for the spent resin from nuclear power plant was $87.2\%$ $(RSD,\;1.2\%)$.

  • PDF

Determination of 129I in simulated radioactive wastes using distillation technique (증류법을 이용한 모의 방사성폐기물 중 129I 의 정량)

  • Choi, Ke-Chon;Song, Byung-Cheol;Han, Sun-Ho;Park, Yong-Joon;Song, Kyu-Seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.141-148
    • /
    • 2011
  • It is clarified in the radioactive waste transfer regulation that the concentration of radioactive waste for the major radio nuclide has to be examined when radioactive waste is guided to the radioactive waste stores. In case of the low level radioactive waste sample, the analytical results of radioactive waste concentration frequently show a value lower than minimum detectable activity (MDA). Since the MDA value basically depends on the amount of a sample, background value, measurement time, counting efficiency, and etc, it would be necessary to increase a sample amount with a intention of minimizing MDA. In order to measure a concentration of $^{129}I$ in low and medium level radioactive waste, $^{129}I$ was collected by using a distillation technique after leaching the simulated radioactive waste sample with a non-volatile acid. The recovery of $^{129}I$ measured was compared with that measured with column elution technique which is a conventional method using an anion-exchange resin. The recovery of inactive iodide by using the distillation method and column elution were found as $86.5{\pm}0.9%$ and $87.3{\pm}2.7%$, respectively. The recovery and MDA value calculated for distillation technique when 100 g of extracted solution of $^{129}I$ was taken, were found to be $84.6{\pm}1.6%$ and $1.2{\times}10^{-4}Bq/g$, respectively. Consequently, the proposed technique with simplified process lowered the MDA value more than 10 times compared to the column elution technique that has a disadvantage of limited sampling amount.

Capture of Volatile Organic Iodine Species Using Mordenites

  • Tejaswini Vaidya;John P. Stanford;Nicolene van Rooyen;Krishnan Raja;Vivek Utgikar;Piyush Sabharwall
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.205-224
    • /
    • 2023
  • The emission of off-gas streams from used fuel recycling is a concern in nuclear energy usage as they contain radioactive compounds, such as, 3H, 14C, 85Kr, 131I, and 129I that can be harmful to human health and environment. Radioactive iodine, 129I, is particularly troublesome as it has a half-life of more than 15 million years and is prone to accumulate in human thyroid glands. Organic iodides are hazardous even at very low concentrations, and hence the capture of 129I is extremely important. Dynamic adsorption experiments were conducted to determine the efficiency of sodium mordenite, partially exchanged silver mordenite, and fully exchanged silver mordenite for the removal of methyl iodide present at parts per billion concentrations in a simulated off-gas stream. Kinetic analysis of the system was conducted incorporating the effects of diffusion and mass transfer. The possible reaction mechanism is postulated and the order of the reaction and the values of the rate constants were determined from the experimental data. Adsorbent characterization is performed to investigate the nature of the adsorbent before and after iodine loading. This paper will offer a comprehensive understanding of the methyl iodide behavior when in contact with the mordenites.

Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors (표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향)

  • Kang, Seung-gu;Lee, Hyun-chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like $^{99}Tc$ and $^{129}I$ contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of $^{99}Tc$ and $^{129}I$ in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.