• Title/Summary/Keyword: $^{111}In$

Search Result 8,964, Processing Time 0.036 seconds

Formation of $CoSi_2$ Film and Double Heteroepitaxial Growth of $Si/epi-CoSi_2/Si$(111) by Solid Phase Epitaxy (고상 에피택시에 의한 초박막 $CoSi_2$ 형성과 $Si/epi-CoSi_2/Si$(111)의 이중헤테로 에피택셜 성장)

  • Choi, Chi-Kyu;Kang, Min-Sung;Moon, Jong;Hyun, Dong-Geul;Kim, Kun-Ho;Lee, Jeong-Yong
    • Korean Journal of Materials Research
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 1998
  • Epitaxial ultrathin films of $CoSi_2$ and double heteroepitaxial structure of Si/$CoSi_2$/Si(lll) were prepared on Si(111)-$7\times{7}$ substrate by in situ solid-phase epitaxy in a ultrahigh vacuum(LHV). The phase, chemical composition, crystallinity, and the microsructure of the Si/$CoSi_2$/Si(lll) interface were investigated by 2-MeV $^4He^{++}$ ion backscattering spectrometry, X-ray diffraction, and high-resolution transmission electron microscopy. The growth mode of the Co film was the Stransky-Krastanov type with texture when the substrate temperature was room temperature. A-type $CoSi_2$ ultrathin film was grown by deposition of about 50A Co on Si(ll1)-$7\times{7}$ substrate followed by in situ annealing at $700^{\circ}C$ for 10 min. The matching face relationships were $CoSi_2$[110]//Si[110] and $CoSi_2$(002)//Si(002) with no misorientation angle. The A-type $CoSi_2$/Si(lll) interface was abrupt and coherent. The best epi-Si/epi-$CoSi_2$2(A-type)/Si(lll) structure was obtained by deposition of Si film on the CoSii at $500^{\circ}C$ followed by in situ annealing at $700^{\circ}C$ for 10 min in UHV.

  • PDF

Growth, Structure, and Stability of Ag on Ordered ZrO2(111) Films

  • Han, Yong;Zhu, Junfa;Kim, Ki-jeong;Kim, Bongsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.204.2-204.2
    • /
    • 2014
  • Among various metal oxides, ZrO2 is of particular interests and has received widespread attention thanks to its ideal mechanical and chemical stability. As a cheap metal, Ag nanoparticles are also widely used as catalysts in ethylene epoxidation and methanol oxidation. However, the nature of Ag-ZrO2 interfaces is still unknown. In this work, the growth, interfacial interaction and thermal stability of Ag nanoparticles on ZrO2(111) film surfaces were studied by low-energy electron diffraction (LEED), synchrotron radiation photoemission spectroscopy (SRPES), and X-ray photoelectron spectroscopy (XPS). The ZrO2(111) films were epitaxially grown on Pt(111). Three-dimensional (3D) growth model of Ag on the ZrO2(111) surface at 300 K was observed with a density of ${\sim}2.0{\times}1012particles/cm2$. The binding energy of Ag 3d shifts to low BE from very low to high Ag coverages by 0.5 eV. The Auger parameters shows the primary contribution to the Ag core level BE shift is final state effect, indicating a very weak interaction between Ag clusters and ZrO2(111) film. Thermal stability experiments demonstrate that Ag particles underwent serious sintering before they desorb from the zirconia film surface. In addition, large Ag particles have stronger ability of inhibiting sintering.

  • PDF

Pt(111) 표면에서의 키랄성 분자들의 흡착 특성 연구

  • Jeong, Min-Bok;Kim, Je-Heon;Jo, Sam-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.332-332
    • /
    • 2011
  • The adsorption and desoprtion properties on Pt(111) of chiral molecules, propylene oxide (PO) and 1,3-dimethyl butylamine (DMBA), have be characterized in utrahigh vacuum. Precision-doses of PO and DMBA onto a Pt(111) surface at 90 K have been achieved with a directed tubular molecular doser controlled by a micron-sized orifice and the reservoir gas pressure. Temperature-programmed desorption (TPD) mass spectra have been employed together with low-energy electron diffraction (LEED) analyses. In addition to the separate adsorption behaviors of PO and DMBA, the enantioselective adsorption of R- and S-PO on Pt(111) precovered with R- or S-DMBA have been investigated thoroughly, and the results will be presented.

  • PDF

Isolation and Characterization of a Naphthalene-Degrading Strain,Alcaligenes sp,A111 (Naphthalene 분해균주 Alcaligenes sp. A111의 분리 및 특성)

  • Oh, Hee-Mock;Kang, Jung-Hyun;Lee, Chang-Ho;Park, Chan-Sun;Ahn, Sung-Ku;Yoon, Byung-Dae;Kho, Yung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.423-429
    • /
    • 1994
  • A bacterial strain which formed a distinct colony on agar plate containing naphthalene as a vapor phase and grew well ina liquid minimal medium was isolated and identified as Alcaligenes sp. A111. Optimum temperature and pH for the cultivation of Alcaligenes sp. A111 were 30$\cir$C and 7.0, respectively. Cell growth increased dramatically from 12 hours after inoculation and revealed a stationary phase at about 48 hours. Relative growth rate ($\mu$')increased hyperbolically depending on the conceration of naphthalene up to 500 ppm and reached to the maximum value pf 2.8/day, but $\mu$' didn't change within a range of 500~4000 ppm naphthalene. NH$_{4}$Cl or NH$_{4}$NO$_{3}$ was preferrd as a nitrogen source and a P : N ratio by weight og 6 : 1 was favorable to cell growth. Alcaligenes sp. A111 utilized the intermediates of degradation of naphthalene and showed tolerance to benzene, toluene, and octane. therefore, it is suggested that Alcaligenes sp. A111 could be effectively used for the biological treatment of wastewater containing naphthalene in the presence of some aromatic compounds.

  • PDF

Angle-resolved Photoemission Study of Epitaxial Graphene on Cu(111)

  • Lee, Wang-Geun;Jeon, Cheol-Ho;Hwang, Han-Na;Kim, Kwang-S.;Park, Chong-Yun;Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.126-126
    • /
    • 2012
  • Copper is considered to be the most promising substrate, especially Cu(111), for the growth of high quality monolayer graphene. Since interactions between graphene and Cu substrates will influence on the orientation, quality, and electrical properties of synthesized graphene, we experimentally determine a weak interfacial interaction between Cu(111) substrate and graphene using angle-resolved photoemission spectroscopy (ARPES). The measurement was conducted from the initial stage to the formation of a graphene monolayer. Graphene growth was initiated along the Cu(111) lattice, and two rotated graphene domains were grown, where no significant differences were observed in the band structure depending on different orientations. The interaction, including electron transfer from the Cu(111) to graphene, was limited between the Shockley state of the Cu(111) surface and the ${\pi}$ bands of graphene. These results provide direct information on the growth behavior and interactions between the Cu(111) and graphene.

  • PDF

Construction of RHEED Apparatus and Study on K, Cs/Si)(111) System (RHEED 장치의 제작과 K, Cs/Si(111)계에 관한 연구)

  • 이경원;안기석;강건아;박종윤;이순보
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.43-49
    • /
    • 1992
  • RHEED apparatus which is one of the systems of surface structure analysis has been constructed.Electron beam is focused by means of magnetic lens, and the beam divergence is about $1{\times}10^{-3}$ rad. The Acceleration voltage of this RHEED apparatus is continuously variable from 0 to 20 kV. K and Cs-adsorbed structureson Si(111)$7{\times}7$ surface at room and high temperatures($200{\times}700^{\circ}C$) have been investigated by RHEED. It is observed that the K and Cs-adsorbed Si(111)surface structures at saturation coverage are Si(111)$7{\tiems}7-K$ and Si(111)$1{\tiems}1-Cs$ at room temperature, respectively. When the specimen temperature was elevated during evaporation,the $3{\times}1$ structure appears in the range of temperature between $300^{\circ}C$ and $550^{\circ}C$, and the $1{\tiems}1$ structure appears above $550^{\circ}C$ in K/Si(111)system. Also, in Cs/Si(111) system the $\sqrt{3}{\times}\sqrt{3}$ structure appears at $300^{\circ}C$, and the $\sqrt{3}{\times}\sqrt{3}+3{\times}1$ structure appears between $350^{\circ}C$ and $400^{\circ}C$.

  • PDF

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness (버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun;Lee, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Low-Cycle Fatigue Life Prediction in GTD-111 Superalloy at Elevated Temperatures (초내열합금 GTD-111의 고온 저주기피로 수명예측)

  • Yang, Ho-Young;Kim, Jae-Hoon;Yoo, Keun-Bong;Lee, Han-Sang;You, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.753-758
    • /
    • 2011
  • The Ni-base super-heat-resistant alloy, GTD-111, is employed in gas turbines because of its high temperature strength and oxidation resistance. It is important to predict the fatigue life of this superalloy in order to improve the efficiency of gas turbines. In this study, low-cycle fatigue tests are performed as variables of total strain range and temperature. The relationship between the strain energy density and number of cycles to failure is examined in order to predict the low-cycle fatigue life of the GTD-111 superalloy. The fatigue life predicted by using the strain-energy methods is found to coincide with that obtained from the experimental data and from the Coffin-Manson method.