Recently intrinsic and scattering quality factor ($\varrho_i^{-1}$ and $\varrho_s^{-1}$) was successfully separated from total quality factor ($\varrho_t^{-1}$) on the seismic data of the Korean Peninsula. From this result, we theoretically calculated the expected coda quality factor ($\varrho_{Cexp}^{-1}$) based on multiple scattering model, and compared with other quality factors such as $\varrho_t^{-1}$, $\varrho_i^{-1}$, $\varrho_s^{-1}$, and observed coda quality factor ($\varrho_c^{-1}$) obtained by single scattering model. While the $\varrho_{Cexp}^{-1}$ values are comparable to the $\varrho_i^{-1}$ values, the $\varrho_c^{-1}$ values are close to the values of $\varrho_t^{-1}$ rather than $\varrho_i^{-1}$ and $\varrho_{Cexp}^{-1}$ except for the 24 Hz frequency. This results suggest that the assumption of uniform scatterer in the Korean Peninsula is unrealistic.
The stochastic variations were analyzed periodicity by autocorrelation, variance spectrum and Fourier series. These time series included hourly and hourly mean observations on DO, water temperature and air temperature which measured by automatic recording instrument at Guii from 1, Jan., 1986 to 23, Feb., 1986. The results of study were as follows: l. Autocorrelation coef. (lag time 120) DO($\varrho_1$= 0.9705), WT($\varrho_1$ = 0.9890), and AT($\varrho_1$ = 0.9874) were deeply related. DO and AT clearly showedr 24-hour periodicities while WT showed 23-26 hour periodicity. 2. Spectral density showed high at 24 hour in eech item and all of them showed weak peak at 12 hour. 3. The explained variance, which was a measure of the contribution of periodic function to the original time series, varied high 90.8 - 94.7%. This results showed that water qualities at Guii were affected deterministic components.
The free radical copolymeriaztion of N-vinylurea(VU) with vinyl acetate (VAc) was carried out at $60^{\circ}C$ in three solvents. VU-vinyl alcohol(VA) copolymers were prepared by the methanolysis of the VU-VAc copolymers. From the nitrogen content measurements of VU-VA copolymers, the monomer reactivity ratios for the VU-VAc copolymerization and the values of Alfrey-Price's Q and e for VU were determined. These Q and $\varrho$ values obtained in the cases of using methanol and methanol-dioxane as the polymerization solvents are comparable with those found for other monomers which have > NCO-pendent groups. The $\varrho$ value indicates that the urea group of VU is a electron-donating group. The copolymerization parameter of VU shows a strong effect of the solvents. These results are interpreted to be that VU is in equilibrium with its tautomer at the polymerization temperature.
For the calculation of population parameter and estimation of recruitment of a fish population, an application of multiple regression method was used with some statistical inferences. Then, the differences between the calculated values and the true parameters were discussed. In addition, this method criticized by applying it to the statistical data of a population of bigeye tuna, Thunnus obesus of the Indian Ocean. The method was also applied to the available data of a population of Pacific saury, Cololabis saira, to estimate its recuitments. A stock at t year and t+1 year is, $N_{0,\;t+1}=N_{0,\;t}(1-m_t)-C_t+R_{t+1}$ where $N_0$ is the initial number of fish in a given year; C, number o: fish caught; R, number of recruitment; and M, rate of natural mortality. The foregoing equation is $$\phi_{t+1}=\frac{(1-\varrho^{-z}{t+1})Z_t}{(1-\varrho^{-z}t)Z_{t+1}}-\frac{1-\varrho^{-z}t+1}{Z_{t+1}}\phi_t-a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}C_t+a'\frac{1-\varrho^{-z}t+1}{Z_{t+1}}R_{t+1}......(1)$$ where $\phi$ is CPUE; a', CPUE $(\phi)$ to average stock $(\bar{N})$ in number; Z, total mortality coefficient; and M, natural mortality coefficient. In the equation (1) , the term $(1-\varrho^{-z}t+1)/Z_{t+1}$s almost constant to the variation of effort (X) there fore coefficients $\phi$ and $C_t$, can be calculated, when R is a constant, by applying the method of multiple regression, where $\phi_{t+1}$ is a dependent variable; $\phi_t$ and $C_t$ are independent variables. The values of Mand a' are calculated from the coefficients of $\phi_t$ and $C_t$; and total mortality coefficient (Z), where Z is a'X+M. By substituting M, a', $Z_t$, and $Z_{t+1}$ to the equation (1) recruitment $(R_{t+1})$ can be calculated. In this precess $\phi$ can be substituted by index of stock in number (N'). This operational procedures of the method of multiple regression can be applicable to the data which satisfy the above assumptions, even though the data were collected from any chosen year with similar recruitments, though it were not collected from the consecutive years. Under the condition of varying effort the data with such variation can be treated effectively by this method. The calculated values of M and a' include some deviation from the population parameters. Therefore, the estimated recruitment (R) is a relative value instead of all absolute one. This method of multiple regression is also applicable to the stock density and yield in weight instead of in number. For the data of the bigeye tuna of the Indian Ocean, the values of estimated recruitment (R) calculated from the parameter which is obtained by the present multiple regression method is proportional with an identical fluctuation pattern to the values of those derived from the parameters M and a', which were calculated by Suda (1970) for the same data. Estimated recruitments of Pacific saury of the eastern coast of Korea were calculated by the present multiple regression method. Not only spring recruitment $(1965\~1974)$ but also fall recruitment $(1964\~1973)$ was found to fluctuate in accordance with the fluctuations of stock densities (CPUE) of the same spring and fall, respectively.
A trial has been made to find out a new method of calculating the survival rate of a fish Population utilizing the length composition data and the characteristics of the frequency curve of the length which usually is normal distribution curve. In this paper, a stochastic method is introduced and applied to calculate the survival rate of yellow croaker caught by Korean trawlers in the Yellow Sea and the East China Sea in 1971. The results are as follows : Mean of survival rate 0.46089 Variance 0.03073 Standard deviation 0.17529 95 percent confidence interval 0.36040-0.56138.
To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.
To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.
1) The decrease in strength of netting twines at the knot may be regarded to be due mainly to the frictional force acting on the tip of the knot. The knot strength T may be given by $$T=\frac{T_0}{1+{\mu}\frac{s}{\rho}\varrho^{\mu\theta}$$ were $T_0$ is the tensile strength of unknotted netting twines, $\mu$ the coefficient of friction beween two netting twines forming a knot, s the contact length between the tip and the netting twine compressing it, $\rho$ the radius of curvature of the compressing, and $\theta$ the angle at which the compressing rubs with another one in the vicinity of the opposite tip. 2) Knots are arranged in order of strength as follows : the reef knot pulled lengthwise $\risingdotseq$ the trawler knot pulled breadtwise the reef knot pulled breadthwise.
Fertilization and early development of turbo cornutus was studied based on the samples which were collected in Yeosu area. Particular emphasis was paid on induction of artificial spawing, fertilization rate, preembryonic development, the growth of the early larva and larval survival to various salinity. Among the various methods for induction of artificial spawning which have been tested for the present study, drying by exposure to air is the. most efficient, and percentage fertilization rate was $83.8-96.4\%$. The diameter of fertilized eggs was $0.182{\pm}0.0028mm$; and the diameter of egg membrane was $0.245{\pm}0.093mm$. Under the temperature range of $20.6-25.4^{\circ}C$ the larvae hatched out after 11:05-11:15 hours of fertilization. After 3.0-3.5 days of fertilization the planktonic larvae begand to settle, and the settlement terminated within 5 days. During the period of 150 days of early culturing the diameter growth of shell(M) and the diameter of shell aperture(A) was formulated as follows: $$1972\;M=0.33e^{0.02070D}$$$$A=0.19e^{0.02282D}$$$$1973\;M=0.32e^{0.02282D}$$$$A=0.16e^{0.02596D}$$ During the same period of early culturing the relative growth of shell diameter and the diameter of shell aperture was formulated as follows : 1972 A=0.6478 S-0.1575 1973 A=0.5897 S-0.0515 After 11 days of larval hatching $0.02-0.18\%$ of planktonic larvae settled. After 150 days of settlement the survival rate of the early shells was $7.4-21.6\%$. Under the temperature range of $21.0-22.7^{\circ}C$ the optimum salinity range for the development of egg and the planktonic larvae was $30-35\%_{\circ}$.
A study has been made to find out a new method of calculating the survival rate of a fish population from length composition and growth equation. 1. In the steady state of the fish population, let the total mortality rate be z, the age of complete recruitment $\alpha$, and the number of $\chi$ year class $N_\chi$. Then ire obtain $$N\chi=N\alpha\;\exp\;{-z(\chi-\alpha)}$$ Let the oldest age in the catch be h, the average age between the age of complete recruitment and the oldest age in the catch $U\chi$. Then we have $$U\chi=\frac{a-b\;\exp\;(-z(b-a))}{1-\exp\;(-z(b-a))}+\frac{1}{z}....(1)$$ and then let be infinite. Then we obtain $$Z=\frac{1}{U\chi-\alpha....(2)$$ 2. Calculating numerical value of $U\chi$ from age composition table and growth equation and substitute in (1) or (2) for it, we may obtain the value of s and $\varrho^{-z}$. 3. This method is applied t a case of yellow croaker in the Yellow Sea and the East China Sea. The results are as follows: Total mortality rate 0.82595 Survival rate 0.43782 95 percent confidence interval 0.43767-0.43797.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.