• Title/Summary/Keyword: $\rho$-power

Search Result 351, Processing Time 0.022 seconds

The Effects of the low power intensity He-Ne IR laser on the change of the Serum Immunoglobulin components in burn rat (저 에너지 레이저 강도가 화상흰쥐의 혈청 면역글로불린의 성분 변화에 미치는 효과)

  • Rho Min-Hee;Kim Jae-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.469-474
    • /
    • 2000
  • This studies were to investigate the effects of low power intensity Helium-Neon Infra-Red(He-Ne IR) laser on the changes of the serum immunoglobulin(1g) components in burn rats, The fourty eight Spraque-Dawley adult male rats were assigned to the 8 groups: the experimental groups(4), the burn control groups(2) and the control groups(2) There was made three degree burn by the 250mW IR on the back of each rats, from 3 days after being burned, the experimental laser groups were irradiated low power He-Ne IR laser for 3 minutes and 4.5 minutes every day during the 7days and 21 days. The results were as follows: The concentrations of immunoglobulin G(Ig G) in serum of burn rats on the treated with during the 3minutes laser for 7 days were higher than those of burn and 4.5 minutes laser groups. There were significantly decreased the change of the level of immunoglobulin M(Ig M) in serum of burn rats on the treated with 3 minutes laser for 7 days to the control group, but were significantly increased on the 3minutes and 4.5 minutes laser groups for 21 days to the those of burn and control groups, and the levels of the Ig M on the 3minutes laser group for 21 days were higher than those of 7 days. The concentrations of immunoglobulin E(Ig E) in serun of the burn rats on the experimental and burn groups were significantly lower than those in control group. As above results, The changes of the level of immonoglobulin components in serum have meaningful role in the healing process on the treated with the low pewer intensity of HE-Ne IR laser.

  • PDF

A study on Optimal Operation of Protection Coordination Devices Evaluation System in Distribution System with Distributed Sources (분산전원이 연계된 배전계통에 보호협조기기 평가시스템의 최적운용에 관한 연구)

  • Ji, Sungho;Song, Bangwoon;Kim, Byungki;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2971-2978
    • /
    • 2013
  • Recently, with the world-wide issues about global warming and CO2 reduction, a number of distributed generations(DGs) such as photovoltaic(PV) and wind power(WP), are interconnected with the distribution systems. However, DGs can change the direction of the power flow from one-direction to bi-direction, and also change the direction and amount of fault current of existing distribution systems. Therefore, it may cause the critical problems on the power quality and protection coordination. This paper proposes an operation algorithm for bi-directional protection coordination using and apply it for the evaluation system for protection coordination. From the simulation results It is found that the proposed method is more effective and convenient than existing method.

The Effects of Swimming and Low Power Laser on the Concentration of Interleukin-6 for Rheumatoid Arthritic Rats (수영과 저출력 레이저 치료가 류마티스 관절염 흰쥐의 혈청 인터루킨-6 농도에 미치는 영향)

  • Park, Mi-Hee;Rho, Min-Hee;Lee, Hyun-Ok;Koo, Bong-Oh;Hwang, Soo-Myung
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.69-76
    • /
    • 2008
  • This study was designed to determine the effects of swimming and low power laser on rheumatoid arthritis in Sprague-Dawley rats. Rheumatoid arthritis was induced in 36 rats among 48 Sprague-Dawley rats by the subcutaneous injection of .05 $m{\ell}$ Freund's Complete Adjuvant into the right hind paw and .05 $m{\ell}$ Freund's Complete Adjuvant into the right hind knee joint capsule. A second injection was performed by the same method using .1 $m{\ell}$ Freund's Complete Adjuvant per a rat. Arthritic rats were divided into 8 groups: each 1 week and 2 weeks of arthritic swimming, arthritic laser, arthritic case control and normal group. In this study, several experimental tests were performed to determine the concentration of Interleukin-6, the space of the knee joint and the thickness of the hind paw. The concentration of Interleukin-6 and hind paw thickness decreased in the swimming group and laser group as compared to the control group. The space of the knee joint increased significantly after the swimming exercise. Swimming and low power laser therapy positively affect rheumatoid arthritis in rats affect by decreasing the concentration of Interleukin-6 and hind paw thickness, and increasing the space of the knee joint.

  • PDF

A Simulation Program for Protection Coordination in the Power Distribution System with Distributed Generators (분산전원 연계 배전계통의 보호협조 정정 프로그램 개발)

  • Kim, Sang-Ok;Seo, In-Yong;Lee, Heung-Ho;Rho, Dae-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A higher penetration of renewable energy sources and adoption of renewable portfolio standard(RPS), the penetration of distributed generators(DGs) into power distribution network is becoming a threat for the safe operation of distribution network. The ground fault current of DGs can cause parasitic trip and mal-trip of protective device in the power distribution network. KEPRI has developed a simulation program for current setting of protective devices in DGs connected distribution network. In this study, we analyzed fault currents of a sample network in two cases, i.e. case 1 is for no DG connection, case 2 for a DG connection. We performed protection coordination for relays installed in the network and analyzed the contribution of a DG.

A Study on the Modeling Method of Performance Evaluation System for MW Scaled Energy Storage System Using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 MW급 ESS용 성능평가설비 모델링 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung-Sik;Park, Jae-Beom;Nam, Yang-Hyeon;Kim, Eung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.885-891
    • /
    • 2017
  • The energy storage system(ESS) is a core component for exchanging the power system structure of the unidirectional power flow into a bidirectional structure. Its important role has been increasing because it has multiple functions such as output stabilization of new renewable energy, demand management, frequency regulation, etc. However, the performance evaluation technology of ESS in korea is lower than one of advanced countries and the recognition of standardization is also lack compared to advanced countries. Furthermore, in order to more accurately and reliably validate the performance of the ESS in advanced countries, it has been required to perform not only performance testing by H/W devices but also performance verification by S/W tool. Therefore, in order to verify the performance testing of ESS by S/W tool, this paper proposes the modeling method of performance testing devices for MW scaled ESS by using the PSCAD/EMTDC S/W, based on real testing devices in domestic institute. From the simulation results of proposed modeling method, it is confirmed that the proposed modeling method is a useful tool for performance validation of ESS.

A study on the Operation Algorithm for Bi-directional Sectonalizer in Distribution System Interconnected with Distributed Generations (분산전원이 연계된 배전계통의 양방향 구간개폐기의 동작 알고리즘에 관한 연구)

  • Yoon, Gi-Gab;Jeong, Jum-Soo;An, Tae-Pung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1802-1809
    • /
    • 2009
  • Abstract The typical distribution systems have the power flow from distribution substations (sources) to customers (load) only as one direction. However, in the case where distributed generations (DG) such as PV system and wind power systems are connected to distribution systems, the DG output variations to distribution systems, so called reverse power flow, may cause the bi-directional power flow. So, the reverse power flow has severe impacts on typical power system, for example power quality problems, protection coordination problems, and so on. Especially, protection devices (sectionalizer) in primary feeder of distribution system interconnected with distributed generations may cause problems of malfunction, and then many customers could have problems like an interruption. So, this paper presents the bi-directional operation algorithm of protection devices to overcome the problems like mal-function. And, also this paper shows the effectiveness of proposed method by using both PSCAD/EMTDC software and test facility of protection devices to simulate the field distribution systems.

A Fundamental Study of VIV Fatigue Analysis Procedure for Dynamic Power Cables Subjected to Severely Sheared Currents (강한 전단 해류 환경에서 동적 전력케이블의 VIV 피로해석 절차에 관한 기초 연구)

  • Chunsik Shim;Min Suk Kim;Chulmin Kim;Yuho Rho;Jeabok Lee;Kwangsu Chea;Kangho Kim;Daseul Jeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.375-387
    • /
    • 2023
  • The subsea power cables are increasingly important for harvesting renewable energies as we develop offshore wind farms located at a long distance from shore. Particularly, the continuous flexural motion of inter-array dynamic power cable of floating offshore wind turbine causes tremendous fatigue damages on the cable. As the subsea power cable consists of the helical structures with various components unlike a mooring line and a steel pipe riser, the fatigue analysis of the cables should be performed using special procedures that consider stick/slip phenomenon. This phenomenon occurs between inner helically wound components when they are tensioned or compressed by environmental loads and the floater motions. In particular, Vortex-induced vibration (VIV) can be generated by currents and have significant impacts on the fatigue life of the cable. In this study, the procedure for VIV fatigue analysis of the dynamic power cable has been established. Additionally, the respective roles of programs employed and required inputs and outputs are explained in detail. Demonstrations of case studies are provided under severely sheared currents to investigate the influences on amplitude variations of dynamic power cables caused by the excitation of high mode numbers. Finally, sensitivity studies have been performed to compare dynamic cable design parameters, specifically, structural damping ratio, higher order harmonics, and lift coefficients tables. In the future, one of the fundamental assumptions to assess the VIV response will be examined in detail, namely a narrow-banded Gaussian process derived from the VIV amplitudes. Although this approach is consistent with current industry standards, the level of consistency and the potential errors between the Gaussian process and the fatigue damage generated from deterministic time-domain results are to be confirmed to verify VIV fatigue analysis procedure for slender marine structures.

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

Economic Evaluation Algorithm of Energy Storage System using the Secondary Battery (이차전지를 이용한 전기저장장치(BESS)의 경제성 평가 알고리즘)

  • Song, Seok-Hwan;Kim, Byung-Ki;Oh, Seung-Teak;Lee, Kye-Ho;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3813-3820
    • /
    • 2014
  • Recently, with the increase in electrical consumption and the unbalanced power demand and supply, the power reserve rate is becoming smaller and the reliability of the power supply is deteriorating. Under this circumstance, a Battery Energy Storage System (BESS) is considered to be an essential countermeasure for demand side management. On the other hand, an economic evaluation is a critical issue for the introduction of a power system because the cost of BESS is quite high. Therefore, this paper presents economic evaluation method for utility use by considering the best mix method and successive approximation method, and an economic evaluation method for customer use by considering the peak shaving function based on the real time price. From a case study on a model power system and educational customer, it was confirmed that the proposed method is a practical tool for the economic analysis of BESS.

Implementation and Characteristic Analysis of DC/DC Voltage Regulator for Operation Efficiency Improvement in PV system (태양광발전의 운용효율 향상을 위한 DC/DC 전압 레귤레이터의 구현 및 특성분석)

  • Kim, Chanhyeok;Choi, Sungsik;Kang, Minkwan;Jung, Youngmun;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.201-208
    • /
    • 2017
  • Recently, the installation of photovoltaic(PV) systems has been increasing due to the worldwide interest in eco-friendly and abundant solar energy. On the other hand, a PV system has approximately 25% power loss while the energy generated from solar cells is transformed to the power coupling point through a power conversion system (DC/AC). If the output voltage of a string in the PV system is lower than the operating range of the inverter when a part of module in the string has a shadow due to weather conditions, the string is not synchronized and the whole efficiency of output power in a PV system may be reduced significantly. Therefore, to overcome this problem, this paper proposes a novel control method to compensate for the lower voltage by introducing a DC/DC voltage regulator for each string in a PV system, which adopts a concept for MPPT (Maximum Power Point Tracking) control function using the P&O algorithm and adopts constant voltage control method used in an existing inverter. This paper also implements a 2kW DC/DC voltage regulator based on the proposed algorithm and performs a variety of scenario-based experiments. From the simulation result, it was confirmed that the operation efficiency in the proposed method is improved compared to the existing method.