• Title/Summary/Keyword: $\pi$-bonding

Search Result 100, Processing Time 0.03 seconds

Properties of Static Dissipative Epoxy Composites Loaded with Silane Coupled-ATO Nanoparticles (Silane Coupling제로 표면 처리된 ATO 나노입자를 이용하여 제조된 대전방지 ATO/EPOXY 복합체의 코팅 물성)

  • You, Yo-Han;Kim, Tae-Young;Kim, Jong-Eun;Suh, Kwang-S.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.4
    • /
    • pp.388-394
    • /
    • 2008
  • For purpose of anti-static film remaining unchanged in the condition of $160^{\circ}C$, organic solvent, acid and base solution $0.01\sim0.03{\mu}m$ particles of Sb doped tin oxide(ATO) were grafted by 3-Glycidyloxypropyltrimethoxysilane(GPTS) for improving interfere bonding force between ATO and epoxy resin. The particles were dispersed in 2-methoxyethanol with YD-I28(Bisphenol A type epoxy resin, Kukdo chemical) and 1-imidazole as hardener. The anti-static solutions were coated on PI film as thickness of $0.1{\mu}m$. Surface resistivity of anti-static film containing conductive polymer became $10^{12}\Omega/\Box$ after 32 hours in $160^{\circ}C$. The surface resistivity of ATO grafted by GPTS / Epoxy coating layer remained as $10^{7.6}\Omega/\Box$ in $160^{\circ}C$ for 7 days. ATO grafted by GPTS / Epoxy coating layer coated on PI film was dipped in acetone for 7 days. The surface resistivity remained unchanged as $10^{7.6}\Omega/\Box$. The anti-static layer dipped in water solutions containing each KOH 10 wt % and $H_2SO_4$ 2 wt% was ultra-sonicated for 10 minutes per once until 30th. The surface resistance of anti-static layer containing ATO grafted by GPTS remained unchanged.

Dynamic Rapid Synthesis of Bis(2,2'-bipyridine)nitrato Zinc (II) Nitrate Using a Microwave Method and its Application to Dye-Sensitized Solar Cells (DSSC)

  • Kim, Young-Mi;Kim, Su-Jung;Nahm, Kee-Pyung;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2923-2928
    • /
    • 2010
  • This study examined the synthesis of the crystal structure of bis(2,2'-bipyridine)nitrato zinc (II) nitrate, $[Zn(bipy)_2(NO_3)]^+NO_3^-$ using a microwave treatment at 300 W and 60 Hz for the application to dye-sensitized solar cells. The simulated complex structure of the complex was optimized with the density functional theory calculations for the UV-vis spectrum of the ground state using Gaussian 03 at the B3LYP/LANL2DZ level. The structure of the acquired complex was expected a penta-coordination with four nitrogen atoms of bipyridine and the oxygen bond of the $NO_3^-$ ion. The reflectance UV-vis absorption spectra exhibited two absorptions (L-L transfers) that were assigned to the transfers from the ligand ($\sigma$, $\pi$) of $NO_3$ to the ligand ($\sigma^*$, $\pi^*$) of pyridine at around 200 - 350 nm, and from the non-bonding orbital (n) of O in $NO_3$ to the p-orbital of pyridine at around 450 - 550 nm, respectively. The photoelectric efficiency was approximately 0.397% in the dye-sensitized solar cells with the nanometer-sized $TiO_2$ at an open-circuit voltage (Voc) of 0.39 V, a short-circuit current density (Jsc) of $1.79\;mA/cm^2$, and an incident light intensity of $100\;mW/cm^2$.

Monolayer Characteristics of Bilayer Forming Phosphate Amphiphiles (이분자막 형성능을 가지는 인산형 양친매성 화합물의 단분자막 특성)

  • ;Kunitake, T.
    • Membrane Journal
    • /
    • v.5 no.2
    • /
    • pp.89-96
    • /
    • 1995
  • The monolayer characteristics of phosphate amphiphiles with azobenzene at air/water interface were studied by the measurment of $\pi-A$ curves and absorption spectra. Immediately after being spread on the water surface, these amphiphiles having strong intermolecular hydrogen bonding interactions showed the typical absorption spectra which resulted from domain formation. But the aggregated domains could be controlled by changing the subphase conditions (adding bulky salt and rasing pH). Addition of metal ions in subphase changes the molecular orientation of monolayer. As the metal ion charge increases ($1\leq2$ < 3 < 4 valence), the absorption maximum (310nm) of the amphiphile with azobenzene shifts to a longer wavelength (350nm) which means that the orientation of the amphiphile is tilted. These results suggest that the molecular orientation, and furthermore the aggregation state of monolayer can be possibly controlled by the interaction of metal ions with different charge types.

  • PDF

Synthesis and Dissociation Constants of Cationic Rhodium (I)-Triphenylarsine Complexes of Unsaturated Nitriles and Aldehyde

  • Chin, Chong-Shik;Park, Jeong-Han;Shin, Sang-Young;Kim, Choong-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.179-183
    • /
    • 1987
  • Reactions of $Rh(ClO_4)(CO)(AsPh_3)_2$ with unsaturated nitriles and aldehyde, L, produce a series of new cationic rhodium (I) complexes, $[RhL(CO)(AsPh_3)_2]ClO_4$ (L = $CH_2$ = CHCN, $CH_2$ = C($CH_3$)CN, trans-$CH_3CH$ = CHCN, $CH_2$ = CH$CH_2$CN, trans-$C_6H_5CH$ = CHCN, and trans-$C_6H_5CH$ = CHCHD) where L are coordinated through the nitrogen and oxygen, respectively but not through the ${\pi}$-system of the olefinic group. Dissociation constants for the reaction, $[RhL(CO)(AsPh_3)_2]ClO_4$ $\rightleftharpoons$ $Rh(ClO_4)(CO)(AsPh_3)_2$ + L, have been measured to be $1.20{\times}10^{-4}$ M (L = $CH_2$ = CHCN), $1.05{\times}10^{-4}$ M (L = $CH_2$ = C($CH_3$)CN, $3.26{\times}10^{-5}$ M (L = trans-$CH_3$CH = CHCN) and $6.45{\times}10^{-5}$ M (L = $CH_2$ = CH$CH_2$CN) in chlorobenzene at $25^{\circ}C, and higher than those of triphenylphosphine complexes, $[RhL(CO)(AsPh_3)_2]ClO_4$ where L are the corresponding nitriles that are coordinated through the nitrogen atom. The differences in dissociation constants seem to be predominantly due to the differences in ${\Delta}H$ (not due to the differences in ${\Delta}S$). The weaker Rh-N (unsaturated nitriles) bonding in $AsPh_3$ complexes than in $PPh_3$ complexes (based on ${\Delta}H$ values) suggests that the unsaturated nitriles in 2∼5 are good ${\sigma}$-donor and poor ${\pi}$-acceptor.

Study of the Separation and Elution Behavior of Phenols as Priority Pollutants in Reversed Phase Liquid Chromatography (역상 액체 크로마토그래피에서 유기오염물질로서의 페놀류들의 분리 및 용리거동에 관한 연구)

  • Dai Woon Lee;Sun Kyung Lee;Keun Sung Yook;Won Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 1989
  • The optimum condition for the separation of priority pollutant phenols using isocratic elution has been determined. The elution behavior of eleven phenols has been also studied to interpret the retention. The reversed phase liquid chromatographic methods were performed on a ${\mu}$-Bondapak $C_{18}$ column with methanol-water, acetonitrile-water, and THF water mixtures as mobile phases. The COF method, where Snyder's solvent triangle concept was combined with a mixture-design statistical technique, was used to optimize the strength and selectivity of solvents for the separation of phenols. The optimum solvent composition, which gives a complete separation of eleven phenols, was found to be $MeOH:ACN:H_2O$ = 7:40:53. The plots of ln k' vs. -${\Delta}H^{\circ}$ and ${\Sigma}{\pi}$ of phenols showed relatively good linearities. Effect of van der Waals volume, pi-energy and hydrogen bonding on the retention of phenols were investigated. The following equation with the correlation coefficient of 0.9927 for ACN-water solvent system was obtained; $log^{k'}=2.515{\times}10^{-2}VWV-1.301{\times}10^{-1}E-3.674{\times}10^{-1}$

  • PDF

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF

Oligothiophene-based Semi-Conducting Nanostructures: from Solution to Solid-State Aggregates

  • Leclere, Ph.;Surin, M.;Lazzaroni, R.;Feast, W.J.;Schenning, A.P.H.J.;Meijer, E.W.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.304-304
    • /
    • 2006
  • The possibility to develop optoelectronic devices with improved properties by controlling the degree of organization at the molecular level of organic materials has been driving the design of new ${\pi}-conjugated$ systems. In particular, the organization by self-assembling processes (${\tilde{\Box}}{\d{\Box}}}$ interactions, hydrogen bonding) of well-defined oligomeric systems such as disubstituted oligothiophene derivatives has been demonstrated as a promising approach to conjugated materials with a high degree of structural order of the constituent building blocks. The self-organization of conjugated building blocks in solution or on surfaces, leading to the construction of nanoscopic and mesoscopic architectures, represents a starting point for the construction of molecular electronics or even circuits, through surface patterning with nanometer-sized objects.

  • PDF

Development of MEMS based Piezoelectric Inkjet Print Head and Its Applications

  • Shin, Seung-Joo;Lee, Hwa-Sun;Lee, Tae-Kyung;Kim, Sung-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.20.2-20.2
    • /
    • 2010
  • Recently inkjet printing technology has been developed in the areas of low cost fabrication in environmentally friendly manufacturing processes. Although inkjet printing requires the interdisciplinary researches including development of materials, manufacturing processes and printing equipment and peripherals, manufacturing a printhead is still core of inkjet technology. In this study, a piezoelectric driven DOD (drop on demand) inkjet printhead has been fabricated on three layers of the silicon wafer in MEMS Technology because of its chemical resistance to industrial inks, strong mechanical properties and dimensional accuracy to meet the drop volume uniformity in printed electronics and display industries. The flow passage, filter and nozzles are precisely etched on the layers of the silicon wafers and assembled through silicon fusion bonding without additional adhesives. The piezoelectric is screen-printed on the top the pressure chamber and the nozzle plate surface is treated with non-wetting coating for jetting fluids. Printheads with nozzle number of 16 to 256 have been developed to get the drop volume range from 5 pL to 80 pL in various industrial applications. Currently our printheads are successfully utilized to fabricating color-filters and PI alignment layers in LCD Flat Panel Display and legend marking for PCB in Samsung Electronics.

  • PDF

Synthesis and Property of Pyrene-Naphthalene Diimide-Pyrene Triad (Pyrene-Naphthalene Diimide-Pyrene Triad의 합성 및 물성에 대한 연구)

  • Kim, Hyunji;Kim, A-Rong;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.305-310
    • /
    • 2014
  • In this study, we presented a newly synthesized pyrene-naphthalene diimide(NDI)-pyrene triad. The optical and structural properties were examined using various characterization techniques. A donor-acceptor-donor triad molecule exhibited a strong charge transfer, though there existed neither intramolecular nor intermolecular hydrogen bonding sites, due to the formation of preferential complementary complex between pyrene and NDI. Powder XRD measurement revealed a sharp and distinctive X-ray patterns, indicating the presence of microcrystalline-like structure. POM images showed anisotropic fingerprint texture similar to that of cholesteric phase, and SEM images showed numerous columnar structures with length of 1 to $10{\mu}m$. Above observation clearly demonstrated that ${\pi}$-complementary NDI-pyrene interactions in the traid was strong enough to form columnar aggregates in the long range.

The Relation Among the Linear Energy Transfer and Changes of Polyphenylene Sulfide Surface by ion Implantation (이온주입에 의한 고분자(Polyphenylene Sulfide)표면 특성 변화와 선에너지전달(Pineal Energy Transfer)과의 관계)

  • Lee, Jae S.;Kim, Bo-Young;Lee, Jae-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.5
    • /
    • pp.407-413
    • /
    • 2005
  • Ion implantation provides a unique way to modify the mechanical, optical and electrical properties of polymer by depositing the energy of ions in the material on the atomic scale. Implantation of ions into the polymers generally leads to a radiation damage, which, in many cases, modifies the properties of the surface and bulk of the material. These modifications result from the changes of the chemical structure caused in their turn by changing the chemical bonding when the incident ions cut the polymer chains, breaks covalent bonds, promotes cross-linking, and liberates certain volatile species. We studied the relation among the linear energy transfer (LET) and changes of surface microstructure and surface resistivity on PPS material using the high current ion implantation technology The surface resistivity of nitrogen implanted PPS decreased to $10^{7}{\Omega}/cm^{2}$ due to the chain scission, cross linking, ${\pi}$ electron creation and mobility increase. In this case, the surface conductivity depend on the 1-dimensional hopping mechanism.