• Title/Summary/Keyword: $\gamma$-aminobutyric acid (GABA)

Search Result 308, Processing Time 0.028 seconds

Effects of Mulberry Leaf on Physical Properties and Chemical Contents of Mulberry Leaf Noodle (뽕국수 제조에서 뽕잎의 조건이 뽕국수의 물리적 성질과 화학성분 함량에 미치는 영향)

  • Kim, Hyeon-Bok;Yang, Seong-Yeol;Lee, Yong-Gi
    • Journal of Sericultural and Entomological Science
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 1996
  • The physical properties of mulberry leaf noodle were compared with 3 level of rates(5, 10, and 20%) of mulberry leaf powder to wheat flour and 6 times of leaf picking seasons. The contents of rutin, ${\gamma}$-aminobutyric acid (GABA) and inorganic compounds in mulberry leaf were analyzed with seasons and pretreatment of mulberry leaf. Dry matter content of mulberry leaf powder was about 20%. The leaf powder passed through 100 mesh sieve was 6% from fresh leaf weight. Through the taste test, 10% mulberry powder rate to flour was the best. Rutin content decreased with season, 319mg/100g DW on May 13, but 111mg/100g DW on May 26 and 43mg/100g DW on June 9. Rutin in dry leaf lost 37% by steaming and 83% by in boiling water. CAGA content on leaf decreased with season, 27.7mg/100g FW on May 13 and about 60% of on June 9.

  • PDF

Changes in physical characteristics of white pan bread by addition of GABA rice bran and its extract (GABA 미강 및 미강추출물 첨가에 의한 식빵의 텍스처 및 저장성의 변화)

  • Oh, Su-Jin;Kwon, Young-Hoi;Shin, Hae-Hun;Kim, Hyun Soo;Choi, Hee-Don;Lim, Seung-Taik
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.614-620
    • /
    • 2018
  • A rice bran physically treated to increase the residual gamma amino butyric acid (GABA) content (200 mg/100 g) or its hot-water extract (200 mg/100 g) was added into a white pan bread, and changes in the physical properties including color, and volume and texture changes during storage at room temperature were examined. The addition of bran powders had negative effects on bread quality and storage stability whereas that of rice bran extract (RBE) improved the storage stability of bread. The lightness of bread crumbs decreased but the volume of bread slightly increased after addition of the RBE. The increase in crumb hardness during storage was retarded by the RBE addition. The residual concentration of GABA in bread was increased 38-fold when 20% of RBE was added. The addition of RBE to white pan bread improved the resistance to staling and health-promoting function because of GABA.

Effects of GABA on Erythropoiesis in the Hep3B Cell and Rat Exposed to Hypoxia

  • Yoon, Joongsoo;Sim, In-Suk
    • Biomedical Science Letters
    • /
    • v.27 no.2
    • /
    • pp.69-76
    • /
    • 2021
  • The aim of this study was to evaluate gamma-aminobutyric acid (GABA)-induced erythropoietin (EPO) and EPO-receptor expression in human Hep3B cells and Sprague Dawley (SD) rats during hypoxia. Expression levels of EPO, EPO-R mRNA, Janus kinase-2 (JAK-2), vascular endothelial growth factor (VEGF), hypoxia inducible factor-1 (HIF-1), and HIF-2 in response to GABA treatment were evaluated in cell lines. SD rats were randomly divided into 5 groups of 8 rats each, and GABA was orally administered; the groups were the normal control (NC), hypoxia-exposed (G0), as well as the GABA 1 mg/100 g body weight (BW) GABA treated group (G1), 5 mg/100 g BW GABA treated group (G5), and 10 mg/100 g BW GABA treated group (G10) with hypoxia. We analyzed EPO levels and red blood cell counts in rat blood and EPO gene expression in kidney tissue. EPO and VEGF mRNA levels in Hep3B cells exposed to hypoxia were significantly increased and further increased after GABA treatment. However, the expression of EPO-R and JAK-2 mRNAs were not affected by GABA, but hypoxia-induced HIF-1 and HIF-2 mRNA expression was inhibited by GABA. In the kidney tissue of rats exposed to hypoxia, the expression level of EPO mRNA was greatly increased, but levels in the GABA treatment groups significantly decreased. EPO levels in the serum showed the same significant trend, but the red blood cell counts were not significantly different. These findings demonstrate that HIF-1 and HIF-2 activation increase EPO expression in Hep3B cells exposed to hypoxia. However HIF decreased by GABA addition and VEGF increased significantly.

Optimization of γ-Aminobutyric Acid (GABA) Production Using Immobilized Lactobacillus plantarum K154 in Submerged Culture of Ceriporia lacerata (Ceriporia lacerata 배양액과 고정화 Lactobacillus plantarum K154를 이용한 감마아미노뷰티르산 생산 최적화)

  • Lee, Eun-Ji;Lee, Sam-Pin
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.438-445
    • /
    • 2015
  • The production of GABA was optimized by co-cultivation of immobilized Lactobacillus plantarum K154 (ILK) with Ceriporia lacerata cultures. The mycelial culture of C. lacerata was performed in a defined medium containing 3% glucose, 3% soybean flour, and 0.15% $MgSO_4$ in a submerged condition for 7 days at $25^{\circ}C$, resulting in the production of 29.7 g/L mycelia, 3.1 g/L exopolysaccharides, 2% (w/w) ${\beta}$-glucan, 68.96 unit/mL protease, and 10.37 unit/mL ${\alpha}$-amylase. ILK in C. lacerata culture showed viable cell counts of $3.13{\time}10^9CFU/mL$ for immobilized cells and $1.48{\time}10^8CFU/mL$ for free cells after 1 day. GABA production in the free and immobilized cells was 9.96 mg/mL and 6.30 mg/mL, respectively, after 7 days. A recycling test of ILK in the co-fermentation was consequently performed five times at $30^{\circ}C$ for 15 days, resulting in the highest production of GABA. GABA could also be efficiently overproduced by co-cultivation with the produced polysaccharides, ${\beta}$-glucan, peptides, and probiotics.

Production of fermented Omija (Schizandra chinensis) beverage fortified with high content of gamma-amino butyric acid using Lactobacillus plantarum (오미자(Schizandra chinensis) 열매 추출물의 Lactobacillus plantarum 젖산발효를 통한 고농도 GABA 함유 발효음료 제조)

  • Lee, Hyo-Seon;Kwon, Soon-Young;Lee, Syng-Ook;Lee, Sam-Pin
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.326-334
    • /
    • 2016
  • Omija (Schizandra chinensis) extract (OE) was fermented by using Lactobacillus plantarum EJ2014 to produce a beverage fortified with gamma-aminobutyric acid (GABA). After 2 days of fermentation in the presence of 2% monosodium glutamate (MSG) and 0.5% yeast extract (YE), the four-fold-diluted OE showed a higher viable cell count ($2.2{\times}10^9CFU/mL$) and lower acidity (1.2%) than that of the unfermented OE. In particular, addition of MSG as a precursor resulted in a small increase in the initial pH. MSG (2%) was completely converted to GABA (0.92%) during lactic acid bacteria fermentation for 3 days. Furthermore, the acidity of the fermented OE decreased from 1.74% to 0.56%. In addition, the original red color of the OE disappeared during LAB fermentation. However, when the fermented OE was mixed with 50% of the original OE, the original red color was recovered, with 19.56 and 13.92 for Hunter L and a values, respectively. The mixture of 50% original OE and 50% fermented OE showed the highest sensory score including the highest overall preference. In conclusion, the OE fortified with GABA and probiotics was produced by fermentation with a static culture, L. plantarum EJ2014.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Sedative Effects of the Essential Oil from Acorus gramineus upon Inhalation

  • Koo, Byung-Soo;Lim, Jae-Chul;Park, Jong-Hee;Lee, Dong-Ung
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.273.2-274
    • /
    • 2003
  • The present study was designed to evaluate central inhibitory effects of an essential oil from Acori graminei Rhizoma (AGR), the dry rhizomes of Acorus gramineus Solander (Araceae) upon fragrance inhalation (aroma therapy). Preinhalation of an essential oil of AGR markedly delayed the appearance of pentylenetetrazole-induced convulsion. Furthermore, the inhalation of an essential oil of AGR impressively inhibited the activity of ${\gamma}$-aminobutyric acid (GABA) transaminase, a degradating enzyme for GABA as inhalation period is lengthened. (omitted)

  • PDF

High mRNA expression of GABA receptors in human sperm with oligoasthenoteratozoospermia and teratozoospermia and its association with sperm parameters and intracytoplasmic sperm injection outcomes

  • Kaewman, Paweena;Nudmamud-Thanoi, Sutisa;Amatyakul, Patcharada;Thanoi, Samur
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.1
    • /
    • pp.50-60
    • /
    • 2021
  • Objective: This study investigated the mRNA expression of gamma-aminobutyric acid (GABA) receptors in the sperm of oligoasthenoteratozoospermic (OAT) and teratozoospermic (TER) men compared to normozoospermic (NOR) men, as well as the relationships between GABA receptor expression and sperm parameters, fertilization rate, and embryo quality. Methods: The mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm was examined using reverse transcription-polymerase chain reaction in three groups of patients: NOR (n=32), OAT (n=22), and TER (n=45). The fertilization rate and embryo quality were assessed in 35 patients undergoing intracytoplasmic sperm injection (ICSI; 10 NOR, 10 OAT, and 15 TER men). Results: OAT men had significantly higher mRNA expression of GABA A-α1 and GABA B-R2 receptors in sperm than NOR men; however, the difference between TER and NOR men was not significant. High levels of these receptors were significantly correlated with low sperm concentration, motility, and morphology, as well as the rate of good-quality embryos (GQEs) at the cleavage stage after ICSI. Patients whose female partners had a >50% GQE rate at the cleavage stage had significantly lower levels of GABA A-α1 receptor expression than those whose partners had a ≤50% GQE rate. Conclusion: Our findings indicate that mRNA levels of GABA receptors in human sperm are correlated with poor sperm quality and associated with embryo development after ICSI treatment. The GABA A-α1 receptor in sperm has a stronger relationship with embryo quality at the cleavage stage than the GABA B-R2 receptor.

Cloning and Expression of a Full-Length Glutamate Decarboxylase Gene from Lactobacillus plantarum

  • Park, Ki-Bum;Oh, Suk-Heung
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.324-329
    • /
    • 2004
  • In order to investigate the molecular mechanism of $\gamma$-aminobutyric acid (GABA) production in lactic acid bacteria, we cloned a glutamate decarboxylase (GAD) gene from Lactobacillus plantarum using polymerase chain reaction (PCR). One PCR product DNA was obtained and inserted into a TA cloning vector with a T7 promoter. The recombinant plasmid was used to transform E. coli. The insertion of the product was con­firmed by EcoRI digestion of the plasmid purified from the transformed E. coli. Nucleotide sequence analysis showed that the insert is a full-length Lactobacillus plantarum GAD and that the sequence is $100\%$ and $72\%$ identical to the regions of Lactobacillus plantarum GAD and Lactococcus lactis GAD sequences deposited in GenBank, accession nos: NP786643 and NP267446, respectively. The amino acid sequence deduced from the cloned Lactobacillus plantarum GAD gene showed $100\%$ and $68\%$ identities to the GAD sequences deduced from the genes of the NP786643 and NP267446, respectively. To express the GAD protein in E. coli, an expression vector with the GAD gene (pkk/GAD) was constructed and used to transform the UT481 E. coli strain and the expression was confirmed by analyzing the enzyme activity. The Lactobacillus plantarum GAD gene obtained may facilitate the study of the molecular mechanisms regulating GABA metabolism in lactic acid bacteria.

Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds

  • Lee, Na-Kyoung;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.869-877
    • /
    • 2017
  • Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, ${\beta}$-glucosidase, and ${\beta}$-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, ${\gamma}$-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.