• 제목/요약/키워드: $\ell_1$-trend filtering

검색결과 2건 처리시간 0.094초

Bias-reduced ℓ1-trend filtering

  • Donghyeon Yu;Johan Lim;Won Son
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.149-162
    • /
    • 2023
  • The ℓ1-trend filtering method is one of the most widely used methods for extracting underlying trends from noisy observations. Contrary to the Hodrick-Prescott filtering, the ℓ1-trend filtering gives piecewise linear trends. One of the advantages of the ℓ1-trend filtering is that it can be used for identifying change points in piecewise linear trends. However, since the ℓ1-trend filtering employs total variation as a penalty term, estimated piecewise linear trends tend to be biased. In this study, we demonstrate the biasedness of the ℓ1-trend filtering in trend level estimation and propose a two-stage bias-reduction procedure. The newly suggested estimator is based on the estimated change points of the ℓ1-trend filtering. Numerical examples illustrate that the proposed method yields less biased estimates for piecewise linear trends.

1 추세필터의 변화점 식별에 있어서의 비일치성 (An empirical evidence of inconsistency of the ℓ1 trend filtering in change point detection)

  • 유동현;임요한;손원
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.371-384
    • /
    • 2022
  • 구간별 상수 구조를 가지는 관측값으로부터 변화점을 식별하기 위해 FLSA가 자주 사용되고 있다. FLSA는 총변동벌점을 이용하기 때문에 평균 수준이 단조성을 가지는 경우에는 변화점 식별에서의 일치성이 보장되지 않는다는 특징이 있다. ℓ1 추세필터는 오차제곱합과 기울기 차이에 대한 ℓ1 벌점의 합을 목적함수로 가지는 구간별 선형 구조 추정방법으로 구간별 선형 구조에서의 변화점을 식별하기 위해 활용할 수 있다. 한편, ℓ1 추세필터의 경우에도 총변동벌점을 이용하므로 FLSA와 마찬가지로 변화점 식별에 있어서 비일치성을 보일 것으로 예상할 수 있는데 이와 관련된 연구는 아직까지 많이 이루어져 있지 않다. 이 연구에서는 모의실험을 통해 구간별 선형 모형에서 변화점을 식별하기 위해 사용되는 ℓ1 추세필터의 비일치성에 대해 살펴본다.