• Title/Summary/Keyword: $\delta$- endotoxin

Search Result 56, Processing Time 0.023 seconds

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF

E. M. Visualization and Electrophoresis analysis of B. thuringiensis var. kurstaki and B. thuringiensis var. israelensis $\sigma$-endotoxin (B. thuringiensis var. kurstaki와 B. thuringiensis var. israelensis 내독소 결정체의 전자현미경 관찰과 전기영동분석)

  • 이형환;강태숙;유관희
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.3
    • /
    • pp.315-319
    • /
    • 1985
  • Delta-endotoxin crystals of B. thuringiensis var. kurstari and B. thuringiensis var. israelensis were purified by NaBr density gradient centrifigation and the wet weight of the BTK endotoxin was approximately 23.79% of the cell wet weight and that of BTI was 25%. The shape of BTK crystal was bipyramidal, whose size was 1.7${\mu}{\textrm}{m}$ $\times$ 0.9${\mu}{\textrm}{m}$ and that of BTI was a spheroid, whose size was about 1.6$\times$0.45${\mu}{\textrm}{m}$. The molecular weight of BTK crystal protein was approximately 134,000 daltons and that of BTI was about 128,000 daltons.

  • PDF

Leucine Rich Repeat Sequence of the ${\delta}$ Endotoxin Family of Bacillus thuringiensis

  • Vudayagiri, Suvarchala;Jamil, Kaiser
    • BMB Reports
    • /
    • v.33 no.1
    • /
    • pp.89-91
    • /
    • 2000
  • In this investigation we report our search for the presence of Leucine Rich Repeats (LRRs) in various Bacillus thuringiensis (Bt) sub species. Leucine rich repeats are short sequence motifs present in some proteins. The consensus sequence corresponding to the LRR was present in Crystal proteins of Bacillus thuringiensis sub species. This LRR sequence has been predicted to be involved in proteinprotein interactions or receptor binding functions, hence the importance of this study.

  • PDF

Redesign of an Interhelical Loop of the Bacillus thuringiensis Cry4B delta-endotoxin for Proteolytic Cleavage

  • Krittanai, Chartchai;Lungchukiet, Panida;Ruangwetdee, Sarinthip;Tuntitippawan, Tipparut;Panyim, Sakol;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.150-155
    • /
    • 2001
  • The mosquito-larvicidal Cry4B protein from Bacillus thuringiensis subsp. israelensds was expressed in Escherichia coli. Upon activation by trypsin, the 130-kDa protoxin was processed into the 65-kDa active toxin containing two polypeptide fragments of ca. 47 and ca. 20 kDa. These two polypeptides are products of internal cleavages on the exposed loop connecting helices 5 and 6 in the seven-helical bundle domain. PCR-based mutagenesis was employed to introduce an additional cleavage site into the loop connecting helices 3 and 4. A series of amino acid changes were introduced into the targeted loop, resulting in seven mutant protoxins. Upon digestion with trypsin, a group of mutants with arginine introduced into the loop (EPRNQ, EPNRNQ, EPRNP, ESRNP and SSRNP) produced polypeptide products similar to those of the wild type (EPNNQ). When the loop, SSRNP, was expanded by an insertion of either asparagine (NSSRNP) or valine (VSSRNP), an additional cleavage was detected with proteolytic products of 47,12 and 6 kDa. This cleavage was confirmed to be at the introduced arginine residue by N-terminal sequencing. The mosquito larvicidal assay against Aedes aegypti demonstrated a relatively unchanged toxicity for the mutants without cleavage and reduced toxicity for those with an additional cleavage.

  • PDF

Ex vivo Cytotoxicity of the Bacillus thuringiensis Cry4B δ-Endotoxin to Isolated Midguts of Aedes aegypti Larvae

  • Barusrux, Sahawat;Sramala, Issara;Katzenmeier, Gerd;Bunyaratvej, Ahnond;Panyim, Sakol;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.294-298
    • /
    • 2003
  • The pathological effect of the Bacillus thuringiensis Cry $\delta$-endotoxins on susceptible insect larvae had extensive damage on the midgut epithelial cells. In this study, an ex vivo assay was devised for assessing the insecticidal potency of the cloned Cry4B mosquito-larvicidal protein that is expressed in Escherichia coli. Determination of toxicity was carried out by using a cell viability assay on the midguts that were dissected from 5-day old Aedes aegypti mosquito larvae. After incubation with the toxin proteins, the number of viable epithelial cells was determined photometrically by monitoring the quantity of the bioreduced formazan product at 490 nm. The results showed that the 65-kDa trypsin-activated Cry4B toxin exhibited toxic potency ca. 3.5 times higher than the 130-kDa Cry4B protoxin. However, the trypsin-treated products of the non-bioactive Cry4B mutant (R158A) and the lepidopteran-specific Cry1Aa toxin displayed relatively no ex vivo activity on the mosquito-larval midguts. The ex vivo cytotoxicity studies presented here confirms data that was obtained in bioassays.

Construction of a Baculovirus Hyphantria cunea NPV Insecticide Containing the Insecticidal Protein Gene of Bacillus thuringiensis subsp. kurstaki HD1

  • Lee, Hyung-Hoan;Moon, Eui-Sik;Lee, Sung-Tae;Hwang, Sung-Hei;Cha, Soung-Chul;Yoo, Kwan-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.685-691
    • /
    • 1998
  • Baculovirus Hyphantrin. cunea nuclear polyhedrosis virus (HcNPV) insecticide containing the insecticidal protein (ICP) gene from Bacillus thuringiensis subsp. kurstaki HD1 was constructed using a lacZ-HcNPV system. The ICP ($\delta$-endotoxin) gene was placed under the control of the polyhedrin gene promoter of the HcNPV. A polyhedrin-negative virus was derived and named ICP-HcNPV insecticide. Then, the insertion of the ICP gene in the ICP-HcNPV genome was confirmed by Southern hybridization analysis. Polyacrylamide gel electrophoresis (PAGE) analysis of the Spodoptera frugiperda cell extracts infected with the ICP-HcNPV showed that the ICP was expressed in the insect cells as 130 kDa at 5 days post-infection. The ICP produced in the cells was present in aggregates. When extracts from the cells infected with the ICP-HcNPV were fed to 20 Bombyx mori larvae, the following mortality rate was seen; 8 larvae at 1 h, 10 larvae at 3 h, and 20 larvae at 12 h. These data indicate that the B. thuringiensis ICP gene was expressed by the baculovirus insecticide in insect cells and there was a high insecticidal activity. The biological activities of the recombinant virus ICP-HcNPV were assessed in conventional bioassay tests by feeding virus particles and ICP to the insect larvae. The initial baculovirus insecticide ICP-HcNPV was developed in our laboratory and the significance of the genetically engineered virus insecticides is discussed.

  • PDF

Production of Microbial Insecticide Using Bacillus thuringiensis BT17 for the Control of Lepidopteran Larvae (Bacillus thuringiensis BT17 균주를 이용한 인시목 유충 방제용 미생물 살충제 생산)

  • Ahn, Kyung-Joon;Lee, Tae-Geun
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.389-396
    • /
    • 2010
  • Insecticidal crystalline toxin producing Bacillus thuringiensis BT17 strain was isolated and identified as B. thuringiensis serovar colmeri by 16S rRNA analysis. BT17 strain produced crystalline ${\delta}$-endotoxin against to Lepidopteran larvae effectively on the culture broth of soybean meal and skim milk, $30^{\circ}C$ and 36 h shaking culture of 280 rpm. The maximum colony forming unit achieved when the culture was continued for 24 h, but the number of crystals increased until 36 h in the 200 L fermentor. Liquid type of biological insecticide product was made, and after 3 months storage in $20^{\circ}C$ the number of crystals was increased up to twice than beginning. Biocontrol effect of BT17 insecticide product was better in Plutella xylostella than in Spodoptera exigua, and the toxicity to animals was negligible.

The Cytotoxic Mechanisms of Bacillus thuringiensis $\delta$-endotoxin, a Bioinsecticide : Effect on $K^+$ Channel of Insect Cell Lines.

  • Seo, Young-Rok;Han, Sung-Sik;Yu, Yong-Man;Lee, Jun-Jae;Ryu, Jae-Chun
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 1996.12a
    • /
    • pp.70-70
    • /
    • 1996
  • The cytotoxicological effect of Bt 1-endotoxin, well-known as a bioinsecticide, was investigated on ion channel of insect cell lines. This study attempted to evaluted the specificity by simple experiment to measure the cell swelling using lepidopteran cell lines in isotonic solution containing only one cation. Cell swelling was stimulated in KCI-sucrose isotonic solution as well as TC-100 media containg in solubilized crystal 5-endotoxin. It suggested that the cell swelling by Bt toxin have a relation to K+ channel. The cell swelling may be due to the stimulation K+ influx and simultaneously the penetration of H2O induced by Bt toxin, because the stimulation of swelling was observed with the solubilized toxin in KCI-sucrose isotonic solution, but not in sucrose isotonic solution. Moreover the specific K+ channel blocker, such as 4-arnjnopyrimidine(4-AP) and ouabain, showed the significant effect on the cell swelling induced by Bt toxin. The increasement of the cell swelling induced by 4-AP suggested to be caused by the block of K+ efflux through K+ leak channels. The inhibition of cell swelling by ouabain, which is the well-known inhibitor of Na+, K+-ATPase, suggested to be due to decreasement of K+ influx following diminishment of Na+, K+-ATPase activities.

  • PDF

Characteristics of Thirty-Six Bacillus thuringiensis Isolates and a New Serovar of B. thuringiensis subsp. kim (Serotype H52)

  • Kim, Soo-Young;Kang, Min-Ho;Choi, Hee-Baeg;Lee, Jee-Un;Charles, Jean Francois;Dumanoir, Veronique Cosmao;Lecadet, Marguerite M.;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.534-540
    • /
    • 1999
  • Thirty-seven strains of Bacillus thuringiensis were isolated from Korean soil and examined for H-antigen serotyping, toxicity, and different spectra of biological activities. The isolate HL-175 bore a specific H-antigen, different from the 51 known serotypes, a spherical $\delta$-endotoxin crystal, and minor different biochemical characteristics. It was resistant to ampicillin, colistin, and penicillin G. Therefore, it was classified as a new serotype, H52, with the name kim. The other 36 isolates also produced endotoxin crystals and endospores. The crystal shape of eight strains was cuboidal while the others were bipyramidal. Biochemical characteristics of the isolates were only slightly different from the known serotypes of B. thuringiensis. The flagellar (H) antigens of the 36 isolates were identified as: one colmeri (H21), three galleriae (H5a,5b); two pakistani (H13); one toumanoffi (H11a, 11b); and twenty-nine kurstaki (H3a,3b). All 36 isolates were resistant to ampicillin, colistin, penicillin, cephalothin, and chloramphenicol.

  • PDF

Novel Preparation and Characterization of the α4-loop-α5 Membrane-perturbing Peptide from the Bacillus thuringiensis Cry4Ba δ-endotoxin

  • Leetachewa, Somphob;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.270-277
    • /
    • 2006
  • Helices 4 and 5 of the Bacillus thuringiensis Cry4Ba $\delta$-endotoxin have been shown to be important determinants for mosquito-larvicidal activity, likely being involved in membrane-pore formation. In this study, the Cry4Ba mutant protein containing an additional engineered tryptic cleavage site was used to produce the $\alpha4$-$\alpha5$ hairpin peptide by an efficient alternative strategy. Upon solubilization of toxin inclusions expressed in Escherichia coli and subsequent digestion with trypsin, the 130-kDa mutant protoxin was processed to protease-resistant fragments of ca. 47, 10 and 7 kDa. The 7-kDa fragment was identified as the $\alpha4$-loop-$\alpha5$ hairpin via N-terminal sequencing and mass spectrometry, and was successfully purified by size-exclusion FPLC and reversed-phase HPLC. Using circular dichroism spectroscopy, the 7-kDa peptide was found to exist predominantly as an $\alpha$-helical structure. Membrane perturbation studies by using fluorimetric calcein-release assays revealed that the 7-kDa helical hairpin is highly active against unilamellar liposomes compared with the 65-kDa activated full-length toxin. These results directly support the role of the $\alpha4$-loop-$\alpha5$ hairpin in membrane perturbation and pore formation of the full-length Cry4Ba toxin.