• Title/Summary/Keyword: $\beta$-secretase

Search Result 66, Processing Time 0.027 seconds

Synthesis and Biological Activities of (4-Arylpiperazinyl)piperidines as Nonpeptide BACE 1 Inhibitors

  • Boja, Poojary;Won, Sun-Woo;Suh, Dong-Hoon;Chu, Jeong-Hyun;Park, Woo-Kyu;Lim, Hee-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1249-1252
    • /
    • 2011
  • Inhibition of BACE 1 activity is considered as a promising therapeutic target for Alzheimer's Disease (AD). Synthesis and inhibitory activities of (4-arylpiperazinyl)piperidines by bioisosteric replacement of a biaryl group with an arylpiperazine as BACE 1 inhibitors are described. The resulting (4-arylpiperazinyl)piperidines represent novel nonpeptide BACE 1 inhibitors with improved in vitro potency.

A Comparison between Extract Products of Magnolia officinalis on Memory Impairment and Amyloidogenesis in a Transgenic Mouse Model of Alzheimer's Disease

  • Lee, Young-Jung;Choi, Dong-Young;Han, Sang-Bae;Kim, Young-Hee;Kim, Ki-Ho;Seong, Yeon-Hee;Oh, Ki-Wan;Hong, Jin-Tae
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.332-339
    • /
    • 2012
  • The components of Magnolia officinalis have well known to act anti-inflammatory, anti-oxidative and neuroprotective activities. These efficacies have been sold many products as nutritional supplement extracted from bark of Magnolia officinalis. Thus, to assess and compare neuroprotective effect in the nutritional supplement (Magnolia $Extract^{TM}$, Health Freedom Nutrition LLC, USA) and our ethanol extract of Magnolia officinalis (BioLand LTD, Korea), we investigated memorial improving and anti-Alzheimer's disease effects of extract products of Magnolia officinalis in a transgenic AD mice model. Oral pretreatment of two extract products of Magnolia officinalis (10 mg/kg/day in 0.05% ethanol) into drinking water for 3 months ameliorated memorial dysfunction and prevented $A{\beta}$ accumulation in the brain of Tg2576 mice. In addition, extract products of Magnolia officinalis also decreased expression of ${\beta}$-site APP cleaving enzyme 1 (BACE1), amyloid precursor protein (APP) and its product, C99. Although both two extract products of Magnolia officinalis could show preventive effect of memorial dysfunction and $A{\beta}$ accumulation, our ethanol extract of Magnolia officinalis (BioLand LTD, Korea) could be more effective than Magnolia $Extract^{TM}$ (Health Freedom Nutrition LLC, USA). Therefore, our results showed that extract products of Magnolia officinalis were effective for prevention and treatment of AD through memorial improving and anti-amyloidogenic effects via down-regulating ${\beta}$-secretase activity, and neuroprotective efficacy of Magnolia extracts could be differed by cultivating area and manufacturing methods.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Effects of δ-Catenin on APP by Its Interaction with Presenilin-1

  • Dai, Weiye;Ryu, Taeyong;Kim, Hangun;Jin, Yun Hye;Cho, Young-Chang;Kim, Kwonseop
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. ${\beta}-Amyloid$ ($A{\beta}$) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that $A{\beta}$ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in $A{\beta}$ production, which initiates synaptic and neuronal damage. ${\delta}-Catenin$ is known to be bound to presenilin-1 (PS-1), which is the main component of the ${\gamma}-secretase$ complex that regulates APP cleavage. Because PS-1 interacts with both APP and ${\delta}-catenin$, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between ${\delta}-catenin$ and APP. However, we observed that ${\delta}-catenin$ could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, ${\delta}-catenin$ reduced PS-1-mediated stabilization of APP. The results suggest that ${\delta}-catenin$ can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.

The Effects of Hominis Placenta Herbal-Acupuncture Solution on the Alzheimer's Disease Model Induced by ${\beta}A$ (자하차(紫河車) 약침(藥鍼)이 ${\beta}A$로 유도(誘導)된 Alzheimer's Disease 병태(病態) 모델에 미치는 영향(影響))

  • Lee, Byung-Hun;Park, Sun-Young;Choi, Cheol-Hong;Lee, Eun-Kyung;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.2
    • /
    • pp.41-64
    • /
    • 2008
  • Objective: Hominis Placenta is used in many cure, mainly treats a weak, chronic disease, especially senile. This research investigates the effect of the Hominis Placenta Herbal-Acupuncture Solution on Alzheimer's disease. Method: The effects of the Hominis Placenta Herbal-Acupuncture Solution on (1) $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, and CD68/CD11b (2) the behavior (3) the infarction area of the hippocampus, and brain tissue injury in Alzheimer's diseased mice induced with 13A were investigated. Results: 1. For the Hominis Placenta Herbal-Acupuncture Solution group a significant inhibitory effect on the memory deficit was shown for the mice with Alzheimer's disease induced by ${\beta}$ A in the Morris water maze experiment, which measured stop-through latency, and distance movement-through latency. 2. The Hominis Placenta Herbal-Acupuncture Solution group suppressed the over-expression of $IL-1{\beta}$ protein, $TNF-{\alpha}$ protein, MDA, and CD68/CD11b, in the mice with Alzheimer's disease induced by ${\beta}A$. 3. The Hominis Placenta Herbal Acupuncture Solution group reduced the infarction area of hippocampus, and controlled the injury of brain tissue in the mice with Alzheimer's disease induced by ${\beta}A$. 4. The Hominis Placenta Herbal-Acupuncture Solution group reduced the Tau protein, GFAP protein, and presenilin1/2 protein, beta-secretase protein, (immunohistochemistry) of hippocampus in the mice with Alzheimer's disease induced by ${\beta}A$. Conclusion: These results suggest that the Hominis Placenta Herbal-Acupuncture Solution group may be effective for the prevention and treatment of Alzheimer's disease. Investigation into the clinical use of the Hominis Placenta Herbal-Acupuncture Solution for Alzheimer's disease is suggested for future research.

  • PDF

Swedish mutation within amyloid precursor protein modulates global gene expression towards the pathogenesis of Alzheimer's disease

  • Shin, Jong-Yeon;Yu, Saet-Byeol;Yu, Un-Young;Ahnjo, Sang-Mee;Ahn, Jung-Hyuck
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.704-709
    • /
    • 2010
  • The Swedish mutation (K595N/M596L) of amyloid precursor protein (APP-swe) has been known to increase abnormal cleavage of cellular APP by Beta-secretase (BACE), which causes tau protein hyperphosphorylation and early-onset Alzheimer's disease (AD). Here, we analyzed the effect of APP-swe in global gene expression using deep transcriptome sequencing technique. We found 283 genes were down-regulated and 348 genes were up-regulated in APP-swe expressing H4-swe cells compared to H4 wild-type cells from a total of approximately 74 million reads of 38 base pairs from each transcriptome. Two independent mechanisms such as kinase and phosphatase signaling cascades leading hyperphosphorylation of tau protein were regulated by the expression of APP-swe. Expressions of catalytic subunit as well as several regulatory subunits of protein phosphatases 2A were decreased. In contrast, expressions of tau-phosphorylating glycogen synthase kinase $3\beta$(GSK-3$\beta$), cyclin dependent kinase 5 (CDK5), and cAMP-dependent protein kinase A (PKA) catalytic subunit were increased. Moreover, the expression of AD-related Aquaporin 1 and presenilin 2 expression was regulated by APP-swe. Taken together, we propose that the expression of APP-swe modulates global gene expression directed to AD pathogenesis.

Presenilin Modulates Calcium-permeant, Magnesium-Nucleotide regulated channel, I(MgNUM)

  • Shin, Sun-Young;Jeong, Soon-Youn;Uhm, Dae-Yong;Sungkwon Chung
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.47-47
    • /
    • 2003
  • The presenilin 1 (PS1) or PS2 is an essential component of the ${\gamma}$-secretase complex, which mediates the intramembrane proteolysis of selected type-I membrane, including the ${\beta}$-amyloid precursor protein (APP) to yield A${\beta}$. Familial Alzheimer's disease (FAD)-associated mutations in presenilins give rise to an increased production of a highly amyloidogenic A${\beta}$42. In addition to their well-documented proteolytic function, the presenilins play a role in calcium signaling. We have previously reported that presenilin FAD mutations cause highly consistent alterations in intracellular calcium signaling pathways, which include deficits in capacitative calcium entry (CCE), the refilling mechanism for depleted internal calcium stores. However, molecular basis for the presenilin-mediated modulation of CCE remains to be elucidated. In the present study, whole-cell patch clamp method was used to identify a specific calcium-permeable ion channel current(s) that is responsible for the CCE deficits associated with FAD-linked PS1 mutants. Unexpectedly, both voltage-activated and conventional store depletion-activated calcium currents I(CRAC), were absent in HEK293 cells, which were stably transfected either with wild-type or FAD mutant (L286V, M146L, and delta E9) forms of PS1. Recently, magnesium-nucleotide-regulated metal cation current, or I(MagNum), has been described and appears to share many common properties with I(CRAC) including calcium permeability and inhibitor sensitivity (e.g. 2-APB). We have detected I(MagNum) in all 293 cells tested. Interestingly, FAD mutant 293 cells developed only about half of currents compared to PS1 wild type cells.

  • PDF

Effects of Polygalae Radix on β-Amyloid Accumulation and Memory Impairment Induced by Chronic Cerebral Hypoperfusion in Rats (원지(遠志)가 만성적 뇌혈류저하 흰쥐의 β-Amyloid 축적과 기억장애에 미치는 영향)

  • Son, Young-Ha;Kim, Sung-Jae;Chung, Min-Chan;Cho, Dong-Guk;Cho, Woo-Sung;Shin, Jung-Won;Park, Dong-Il;Sohn, Nak-Won
    • The Korea Journal of Herbology
    • /
    • v.29 no.6
    • /
    • pp.73-83
    • /
    • 2014
  • Objectives : This study was investigated the effects of the root of Polygala tenuifolia (POL) on learning and memory impairment induced by chronic cerebral hypoperfusion in rats. Methods : Chronic cerebral hypoperfusion was produced by permanent bilateral common carotid artery occlusion (pBCAO). POL was administered orally once a day (130 mg/kg of water-extract) for 28 days starting at 4 weeks after the pBCAO. The acquisition of learning and the retention of memory were tested on 9th week after the pBCAO using the Morris water maze. In addition, effects of POL on $A{\beta}$ generation and expressions of APP and BACE1 were observed in the hippocampus of rats. Results : POL significantly prolonged the swimming time spent in target quadrant and significantly reduced the swimming time spent in the quadrant far from the target. POL significantly increased the percentage of swim in the targer quadrant in the retention test, while POL was not effective on the escape latencies in the acquisition training trials. POL significantly reduced the levels of $A{\beta}_{(1-40)}$ and $A{\beta}_{(1-42)}$ in the cerebral cortex and the level of $A{\beta}_{(1-42)}$ in the hippocampus produced by chronic cerebral hypoperfusion. POL also significantly attenuated the up-regulation of APP and BACE1 expression in the hippocampus produced by chronic cerebral hypoperfusion. Conclusions : The results show that POL alleviated memory deficit and up-regulation of $A{\beta}$ and BACE1 expressions in the hippocampus. This result suggests that POL may exert ameliorating effect on memory deficit through inhibition of ${\beta}$-secretase activity and $A{\beta}$ generation.

Panax ginseng as an adjuvant treatment for Alzheimer's disease

  • Kim, Hyeon-Joong;Jung, Seok-Won;Kim, Seog-Young;Cho, Ik-Hyun;Kim, Hyoung-Chun;Rhim, Hyewhon;Kim, Manho;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.401-411
    • /
    • 2018
  • Longevity in medicine can be defined as a long life without mental or physical deficits. This can be prevented by Alzheimer's disease (AD). Current conventional AD treatments only alleviate the symptoms without reversing AD progression. Recent studies demonstrated that Panax ginseng extract improves AD symptoms in patients with AD, and the two main components of ginseng might contribute to AD amelioration. Ginsenosides show various AD-related neuroprotective effects. Gintonin is a newly identified ginseng constituent that contains lysophosphatidic acids and attenuates AD-related brain neuropathies. Ginsenosides decrease amyloid ${\beta}$-protein ($A{\beta}$) formation by inhibiting ${\beta}$- and ${\gamma}$-secretase activity or by activating the nonamyloidogenic pathway, inhibit acetylcholinesterase activity and $A{\beta}$-induced neurotoxicity, and decrease $A{\beta}$-induced production of reactive oxygen species and neuro-inflammatory reactions. Oral administration of ginsenosides increases the expression levels of enzymes involved in acetylcholine synthesis in the brain and alleviates $A{\beta}$-induced cholinergic deficits in AD models. Similarly, gintonin inhibits $A{\beta}$-induced neurotoxicity and activates the nonamyloidogenic pathway to reduce $A{\beta}$ formation and to increase acetylcholine and choline acetyltransferase expression in the brain through lysophosphatidic acid receptors. Oral administration of gintonin attenuates brain amyloid plaque deposits, boosting hippocampal cholinergic systems and neurogenesis, thereby ameliorating learning and memory impairments. It also improves cognitive functions in patients with AD. Ginsenosides and gintonin attenuate AD-related neuropathology through multiple routes. This review focuses research demonstrating that ginseng constituents could be a candidate as an adjuvant for AD treatment. However, clinical investigations including efficacy and tolerability analyses may be necessary for the clinical acceptance of ginseng components in combination with conventional AD drugs.

Overexpression and Refolding of BACE2 (BACE2의 대량발현 및 리폴딩)

  • Park, Sun Joo;Tai, Shuaiqi;Lee, Yeon-Ji;Jeon, You-Jin;Kim, Yong-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.4
    • /
    • pp.370-375
    • /
    • 2014
  • BACE2 is a membrane-bound aspartic protease that is highly homologous with BACE1. While BACE1 processes the amyloid precursor protein (APP) at a key step in generating ${\beta}$-amyloid peptide and presumably causes Alzheimer's disease (AD), BACE2 has not been demonstrated to be involved in APP processing directly, and its physiological functions are unknown. To determine its function and to develop inhibitors from marine sources, we constructed an overexpression vector for producing BACE2. The gene encoding human BACE2 protease was amplified using the polymerase chain reaction and cloned into the pET11a expression vector, resulting in pET11a/BACE2. Recombinant BACE2 protease was overexpressed successfully in E. coli as inclusion bodies, refolded using the rapid-dilution method, and purified via two-step fast protein liquid chromatography using Sephacryl S-300 gel filtration and Resource-Q column chromatography. The BACE2 protease produced was an active form. This study provides an efficient method not only for studying the basic properties of BACE2, but also for developing inhibitors from natural marine sources.