• Title/Summary/Keyword: $\beta$-lactam antibiotic

Search Result 55, Processing Time 0.025 seconds

Biosynthesis of $\beta$-Lactam Antibiotics by Cell-free Extract from Lysobacter lactamgenus

  • Roh, Ju-Won;Nam, Doo-Hyun
    • Archives of Pharmacal Research
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 1992
  • Using cell-free extract of Lysobacter lactamgenus, enzymatic conversion of $\delta$-L-($\alpha$-aminoadiphyl)-L-cysteinyl-D-valine (ACV) the first substrate of $\beta$-lactam biosynthesis, into antibiotic compounds was attempted. In high performance liquid chromatographic (HPLC) analysis, the biosynthetic intermediates for cephalosporin antibiotics including isopenicillin N, deacetoxycephalosporin C, deacetylcephalosporin C and unknown cephem compound were detected in reaction mixtures. It implies that cephabacin compounds from L lactamgenus could be produced by biosynthetic routes through penicillin ring formation and its expansion to cephalosporin ring, likely as cephalosporin C from Cephalosporium or cephamycin C from Streptomyces. Among biosynthetic enzyme in cell-free extract, the ring formation activity (isopenicillin N synthetase activity) was separated in 50-60% of ammonium sulfate fraction, and ring expansion activity (deacetoxycephalosporin C synthetase activity) was found to be in 40-50% fraction. The partially purified isopenicillin N synthetase could convert as much as 90% ACV to isopenicillin N during 6-hour reaction.

  • PDF

Studies of the Physiological Activity of Korean Ginseng (Part 3) The effects of Ginseng Saponin on the Antimicrobial Activity and Drug-resistance of Antibiotics in Bacteria (인삼의 생리활성에 관한 연구 (제 3 보)항생물질의 항균활성과 약제내성에 대한 인삼 Saponin의 영향)

  • 전홍기;김선희
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.3
    • /
    • pp.171-175
    • /
    • 1982
  • An oxytetracycline as being a tetracycline-antibiotic substance displayed a general synergism in the antimicrobial activity by the interaction of ginseng saponin and antibiotics, but did not to Sarcina maginata. Penicillin G.Na as being a $\beta$-lactam-antibiotic substance displayed a synergism in the antimicrobial activities by the addition of ginseng saponin to microorganisms used, but changed the effects in the antimicrobial activity of penicillin G.Na against the genus Serratia. An antimicrobial activity by the addition of ginseng saponin to antibiotics showed a non-specificity, and it varied synergism or antagonism to Gram-positive or Gram-negative bacterium. It was assumed that a drug-resistance could be eliminated by the dual administration of ginseng saponin and antibiotics.

  • PDF

SYNTHETIC DEVELOPMENT OF NEW 1$\beta$-SUBSTITUTED CARBAPENEMS

  • Nagao, Yoshimitsu
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.34-35
    • /
    • 1993
  • The Development of new asymmetric induction methods useful for syntheses of biologically active natural products and drugs, using C4-chiral 1,3-th-iazolidine-2-thiones, has been a recent focus of interest. 1-8) The present account describes the significance of particular heterocycles in the synthetic development of new 1${\beta}$-substituted carbapenems. A fungal metabolite, (+)-thienamycin (1) has attracted one's attention as a hopeful candidate for new-generation antibiotic drugs because of its strong antimicrobial activities and wide antimicrobial spectra due to the extensive inhibition against various ${\beta}$-lactamases. However, it has been serious problems toward a practically useful drug that (+)-thienamycin is fairly labile in the solution and can be metabolized by renal dehydropept- idase-I (DHP-I). Recently, a Merck Sharp & Dohme research group exploited a non-natural ${\beta}$-lactam, imipenem (2) which has been appeared in the drug market as the first carbapenem-type antibiotic drug. 9) However 2 must be used with a DHP-I inhibitor, cilastatin sodium (3).9) Thus, a 1,${\beta}$-methyl- carbapenem derivative 4 has been disclosed by the same group. 10) It seems to be more hopeful candidate as a new-generation antibiotic because it can directly resist against metabolism by the renal DHP-1 without an enzyme inhibitor 3. 10)

  • PDF

Cloning of Isopenicillin N Synthase Gene from Lysobacter lactamgenus

  • Ryu, Jae-Kook;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.373-377
    • /
    • 1997
  • The gene for isopenicillin N synthase (cyclase; IPNS) was cloned from Lysobacter lactamgenus using DNA probe amplified with primers based on the consensus sequences of isopenicillin N synthase genes of other ${\beta}$-lactam-producing microorganisms. The genomic library of L. lactamgenus using pUC18 plasmid cloned at the SacI site were screened with the PCR-generated DNA probe and three positive clones were isolated. Enzyme activities in E. coli clones were confirmed by bioassay and HPLC assay. Throughout the functional mapping, it was observed that the gene for isopenicillin N synthase is located at the 1.3-kb XhoI-BamHI fragment of insert of positive clones. Nucleotide sequencing at both ends of the XhoI-BamHI fragment revealed that IPNS of L. lactamgenus has the common amino acid sequences at amino- and carboxy-termini.

  • PDF

Synthesis and Antibacterial Activities of New $\beta$-Lactam Compounds (새로운 $\beta$-락탐계 화합물의 합성 및 항균성에 관한 연구)

  • 진정일;장민선;민신홍
    • YAKHAK HOEJI
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 1986
  • New antibiotics having moieties of penicillanic acid, cephalosporanic acid and ampicillin on both ends of the central alkylene were synthesized by reacting 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and ampicillin with hexamethylene diisocyanate and sebacoyl chloride, respectively. Antibacterial activities of the compounds were also investigated. The compound derived from sabacic acid and ampicillin exhibited an enhanced antibacterial activities against gram-negative bacteria and was found to be a promising wide-spectrum antibiotic.

  • PDF

An Antibiotic from Actinomycetes Becoming Effective for Cephalosporin Resistant Pathogenic Pesudomonas sp. (방선균이 생산하는 Cephalosporin 내성 병원성 Pseudomonas에 유효한 항생물질)

  • 하병조
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.3
    • /
    • pp.271-278
    • /
    • 1999
  • We isolated activnmycetes LAM-98-80 as strain producing an effective antibiotic for cephalosporin re-sistant pathogenic PSeudomonas sp. and identified as Streptomyces sp. LAM-98-80 from cultural and phyisological characteristics. We investigated the optimal culture conditions for producation of an anti-biotic becoming effective for cephalsporin-resistant pathogenic Pseudomonas sp. It was found that 1.5% soluble starch and 1.0% yeast extract were good as carbon and nitrogen source respectively. The pro-duction of antibiotic was also activated by 0.04% Mn2+ as 80% degree. The optimum initial pH on pro-ductio of antibiotic was pH 7.0. The culture condition for the maximal productivity of the antibiotic was at 3$0^{\circ}C$ for 5 days. The cephalosporin-resistant pathogenic Pseudomonas sp. as test bacteria was rev-ealed to resist antibiotic of cepha families but revealed to not resist those of $\beta$-lactam families ampicil-lin and amoxicillin. Parital purified antibiotic was stable for the pH from 3 to 9 and was also stable when treated at 70 $^{\circ}C$ for 1 hour, This antbiotic was effective against all gram positive and negative bac-teria but was not effective against molds and yeasts.

  • PDF

Preparation of biodegradable microspheres containing water-soluble drug, $\beta$-lactam$ antibiotic

  • Kim, Jin-Hee;Kwon, Ick-Chan;La, Sung-Bum;Jeong, Seo-Young;Young, Taek-Sohn;Seo, Young-Jeong
    • Archives of Pharmacal Research
    • /
    • v.19 no.1
    • /
    • pp.30-35
    • /
    • 1996
  • Poly(l-lactic acid)(PLLA) microspheres loaded with ampicillin sodium (AMP-Na_, .betha.-lactam antibiotic, were prepared by a w/o/w multiple emulsion-solvent evaporation method. The amounts of each component in three phases (inner water phase, organic phase, and outer water phase) wre carefully examined in the preparation of PLLA microspheres. The stirring rate, another preparation parameter, was also investigated for study on the effect of mechanical stress on the drug loading and morphology of PLLA microspheres. Most of the preparation parameters had a great influence on the drug loading, surface morphology and size distribution of PLLA microspheres. PLLA microspheres with 15.89 w/w% drug loading were subjected to the in vitro release experimet. The release of ampicillin sodium was constant at a rate of 1.68 $mug/ml/day$ per 1 mg of microspheres for 18 days initial burst effect.

  • PDF

Comparison of residual antibiotic materials in meet -Slaughtered cattle and swine in Seoul- (식육중 잔류항균물질 비교 조사 -서울지역 도축 소와 돼지를 중심으로-)

  • 변정옥;강영일;이달주;황래홍;이양수;이병동
    • Korean Journal of Veterinary Service
    • /
    • v.25 no.3
    • /
    • pp.229-236
    • /
    • 2002
  • This study was carried out to compare the residual antibiotic materials in muscles of slaughter cattle and swine from slaughterhouses in Seoul from 2000 to 2001 by EEC-4-plate method, Charm II and HPLC method. 1. Residual antibiotic materials were detected from 95 samples(0.8%) by EEC-4-plate and 57 samples(10.2%) by Charm II. The final HPLC method determined the positives are 43(45.3%) and 27(47.3%) respectively. 2. The detection ratios were 45% by EEC-4-plate and 47% by Charm II. 3. Seventy samples were classified as tetracyclines 56(75.7.4%), sulfonamides 10(14.9%), $\beta$-lactam 6(8.1%) chloramphenicol 1(1.4%). Three of them were confirmed to be positive simmultaneously for tetracyclines, sulfonamides and chloramphenicol. 4. The highest residual concentration of chlortetracycline, oxytetracycline, sulfamethazine, sulfadimethoxine, sulfaquinoxaline, penicillin, ampicillin and chloramphenicol were 0.34, 11.29, 68.16, 0.13, 4.0, 0.12, 0.4 and 0.04ppm, respectively.

Increased Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus USA300 Δpsm Mutants and a Complementation Study of Δpsm Mutants Using Synthetic Phenol-Soluble Modulins

  • Song, Hun-Suk;Bhatia, Shashi Kant;Choi, Tae-Rim;Gurav, Ranjit;Kim, Hyun Joong;Lee, Sun Mi;Park, Sol Lee;Lee, Hye Soo;Joo, Hwang-Soo;Kim, Wooseong;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.115-122
    • /
    • 2021
  • Phenol-soluble modulins (PSMs) are responsible for regulating biofilm formation, persister cell formation, pmtR expression, host cell lysis, and anti-bacterial effects. To determine the effect of psm deletion on methicillin-resistant Staphylococcus aureus, we investigated psm deletion mutants including Δpsmα, Δpsmβ, and Δpsmαβ. These mutants exhibited increased β-lactam antibiotic resistance to ampicillin and oxacillin that was shown to be caused by increased N-acetylmannosamine kinase (nanK) mRNA expression, which regulates persister cell formation, leading to changes in the pattern of phospholipid fatty acids resulting in increased anteiso-C15:0, and increased membrane hydrophobicity with the deletion of PSMs. When synthetic PSMs were applied to Δpsmα and Δpsmβ mutants, treatment of Δpsmα with PSMα1-4 and Δpsmβ with PSMβ1-2 restored the sensitivity to oxacillin and slightly reduced the biofilm formation. Addition of a single fragment showed that α1, α2, α3, and β2 had an inhibiting effect on biofilms in Δpsmα; however, β1 showed an enhancing effect on biofilms in Δpsmβ. This study demonstrates a possible reason for the increased antibiotic resistance in psm mutants and the effect of PSMs on biofilm formation.

Molecular Epidemiology of Metallo-β-lactamase Producing Pseudomonas aeruginosa Clinical Isolates (임상에서 분리된 Metallo-β-lactamase 생성 Pseudomonas aeruginosa의 분자역학)

  • Choi, Myung-Won
    • Journal of Life Science
    • /
    • v.22 no.9
    • /
    • pp.1268-1276
    • /
    • 2012
  • The emergence and dissemination of carbapenem-resistant bacteria have resulted in limitations of antibiotic treatment and potential outbreaks of metallo-${\beta}$-lactamase (MBL) producing Pseudomonas aeruginosa resistant to carbapenems. In this study, we conducted molecular characterization of the MBL genes of the ${\beta}$-lactam drug-resistant P. aeruginosa and prepared basic data for treatment and prevention of proliferation of antimicrobial-resistant bacterial infections. Forty-two P. aeruginosa isolates of 254 were resistant to imipenem or meropenem. Among the 42 isolates, 28 isolates were positive for the Hodge test, and 23 isolates were positive for the EDTA-disk synergy test (EDST). MBLs were detected in 59.5% (25/42) of P. aeruginosa isolates. Eight isolates harbored $bla_{IMP-6}$, whereas 17 isolates harbored $bla_{VIM-2}$. The $bla_{IMP-6}$ gene was in a class 1 integron containing five gene cassettes: $bla_{IMP-6}$, qac, aacA4, $bla_{OXA-1}$, and aadA1. Some strains that produce IMP-6 and VIM-2 showed epidemiological relationships. The $bla_{IMP-6}$ gene in carbapenem-resistant P. aeruginosa showed an identical pattern to a gene cassette that was reported at a hospital in Daegu, Korea. Therefore, MBL-producing P. aeruginosa is already endemic in the community. We are concerned that the existence of carbapenem-resistant bacteria containing the blaMBL gene may increase pressure on antibiotic selection when treating infections. We believe that we should select appropriate antibiotics based on the antibiotic susceptibility test and continue the research to prohibit the emergence and spread of antibiotics resistant bacteria.