• 제목/요약/키워드: $\beta$-lactam antibiotic

검색결과 55건 처리시간 0.024초

Detection of $\beta$-lactam Antibiotic-resistant Genes in Eschericia coli using DNA Chip from Porcine Fecal Samples

  • Na, Sung-ho;Cho, Ho-seong;Kim, Yong-hwan;A.W.E. Effendy;Park, Nam-yong
    • 한국수의병리학회:학술대회논문집
    • /
    • 한국수의병리학회 2003년도 추계학술대회초록집
    • /
    • pp.33-33
    • /
    • 2003
  • There prevalence of $\beta$-lactamases bacteria in animals has been increased since 1990s [1]. The resistance in E coli which is mediated by $\beta$-lactamases hydrolyze the $\beta$-lactam ring eventually inactivate the antibiotics [2]. Generally, $\beta$-lactamases can be classified into four main groups and eight subgroups according to their functional and structural characteristics [3]. The detection of $\beta$-lactam antibiotic-resistant bacteria by DNA chip has been described [4]. The chip has a specific probe DNAs that contained the $\beta$-lactam antibiotic-resistant genes which was labeled by multiplex PCR reaction with a mixture of primer sets that were designed to amplify specific gene. Here we report the susceptibility of enteropathogenic E. coli isolated from pigs in Korea using the DNA chip in detecting $\beta$-lactam antibiotic-resistant genes. (omitted)

  • PDF

A novel method to depurate β-lactam antibiotic residues by administration of a broad-spectrum β-lactamase enzyme in fish tissues

  • Choe, Young-Sik;Lee, Ji-Hoon;Jo, Soo-Geun;Park, Kwan Ha
    • Fisheries and Aquatic Sciences
    • /
    • 제19권10호
    • /
    • pp.45.1-45.5
    • /
    • 2016
  • As a novel strategy to remove ${\beta}$-lactam antibiotic residues from fish tissues, utilization of ${\beta}$-lactamase, enzyme that normally degrades ${\beta}$-lactam structure-containing drugs, was explored. The enzyme (TEM-52) selectively degraded ${\beta}$-lactam antibiotics but was completely inactive against tetracycline-, quinolone-, macrolide-, or aminoglycoside-structured antibacterials. After simultaneous administration of the enzyme with cefazolin (a ${\beta}$-lactam antibiotic) to the carp, significantly lowered tissue cefazolin levels were observed. It was confirmed that the enzyme successfully reached the general circulation after intraperitoneal administration, as the carp serum obtained after enzyme injection could also degrade cefazolin ex vivo. These results suggest that antibiotics-degrading enzymes can be good candidates for antibiotic residue depuration.

Detection of beta-lactam antibiotic resistant genes in Escherichia coli from porcine fecal samples using DNA chip

  • Park, Nam-Yong;Na, Sung-Ho;Cho, Ho-Seong
    • 한국동물위생학회지
    • /
    • 제30권4호
    • /
    • pp.505-510
    • /
    • 2007
  • This study was conducted to detect ${\beta}$-lactam antibiotic-resistant genes in the 400 E coli isolates from porcine fecal samples in Korea by a DNA chip. The DNA chip contains the specific probe DNAs of the ${\beta}$-lactam antibiotic-resistant genes that had been labeled with a mixture of primer set designed to amplify specific genes (PSE, OXA, FOX, MEN, CMY, TEM, SHV, OXY and AmpC) using a multiplex polymerase chain reaction (PCR). Of 400 isolates 339 contained at least one ${\beta}$-lactamases gene. Resistance to ${\beta}$-lactamases was mediated mainly by AmpC (n = 339, 100%), and followed by TEM (n = 200, 59.0%), CMY (n = 101, 29.8%), PSE (n = 30, 8.9%) and both OXA and SHV genes (n = 20, 5.9%), while the FOX, MEN and OXY genes were not detected. The other sixty-one did not contain any ${\beta}$-lactamase genes even though they were resistant to antimicrobial drugs. In conclusion, the DNA chip system can be used as a rapid and reliable method for detecting of ${\beta}$-lactamases genes, which will help veterinarians select the antibiotics for monitoring and treating of animal diseases.

Structural Insights for β-Lactam Antibiotics

  • Dogyeoung, Kim;Sumin, Kim;Yongdae, Kwon;Yeseul, Kim;Hyunjae, Park;Kiwoong, Kwak;Hyeonmin, Lee;Jung Hun, Lee;Kyung-Min, Jang;Donghak, Kim;Sang Hee, Lee;Lin-Woo, Kang
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.141-147
    • /
    • 2023
  • Antibiotic resistance has emerged as a global threat to modern healthcare systems and has nullified many commonly used antibiotics. β-Lactam antibiotics are among the most successful and occupy approximately two-thirds of the prescription antibiotic market. They inhibit the synthesis of the peptidoglycan layer in the bacterial cell wall by mimicking the D-Ala-D-Ala in the pentapeptide crosslinking neighboring glycan chains. To date, various β-lactam antibiotics have been developed to increase the spectrum of activity and evade drug resistance. This review emphasizes the three-dimensional structural characteristics of β-lactam antibiotics regarding the overall scaffold, working mechanism, chemical diversity, and hydrolysis mechanism by β-lactamases. The structural insight into various β-lactams will provide an in-depth understanding of the antibacterial efficacy and susceptibility to drug resistance in multidrug-resistant bacteria and help to develop better β-lactam antibiotics and inhibitors.

Biosynthetic Gene Cluster of Cephabacin for the Combinatorial Biosynthesis of $\beta$-Lactam Antibiotics

  • Chang, Hyun-Sung;Park, Myoung-Jin;Atanas Demirev;Nam, Doo-Hyun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.85-87
    • /
    • 2003
  • $\beta$-Lactams are historically and clinically representative antibiotics used for therapeutic purposes. In early days, penicillin (penam antibiotic) and cephalosporin (cephem antibiotic) were found in culture broth of two different filamentous fungi, Penicillium chrysogenum and Acremonium chrysogenum. Since 1970, a variety of $\beta$-lactam structures have been discovered from bacterial cultures including Streptomyces species, which are known as cephamycin, cephabacin (cephem antibiotics), clavulanic acid (oxopenam antibiotic), thienamycin (carbapenem antibiotic), and sulfazecin (monobactam antibiotic). (omitted)

  • PDF

울산 지역 소아청소년과 및 이비인후과에서의 항생제 처방 형태 (Outpatient Antibiotic Prescription by Pediatric and ENT Physicians in Ulsan City)

  • 김성철;박용철;김보금;남두현
    • 한국임상약학회지
    • /
    • 제20권2호
    • /
    • pp.145-150
    • /
    • 2010
  • In order to investigate the antibiotic prescription pattern for upper respiratory infections (URI), the prescription sheets for outpatients from July 2008 to June 2009 were collected from 7 community pharmacies in Ulsan City, and the prescription pattern of Pediatric and ENT physicians was analyzed. The antibiotic prescription rates of Pediatric and ENT physicians were 63.8% and 61.7%, respectively. It was also observed that the oral antibiotic prescription was 95.6% in Pediatrics and 97.6% in ENT. The most favorable antibiotics by Pediatric physicians were penicillins (21.5%) penicillin-clavulanate (36.4%) and cephalosporins (16.5%), macrolides (11.6%), quinolones (3.5%), and nifuroxazide (3.5%). In case of ENT, the commonly prescribed antibiotics were also penicillin-clavulanate (47.6%), cephalosporins (31.6%), macrolides (11.9%) and sulfonamide (1.3%). The antibiotic combination rate was 7.6% in Peditrics and 1.9% in ENT, among antibiotic prescriptions. The combination of more than two oral antibiotics was examined as 66.8% in Pediatrics and 44.2% in ENT. The common oral antibiotic combination in Pediatrics was prescriptions of two ${\beta}$-lactam antibiotics (54.3%). Among them 83% was the combination of amoxicillin-clavulanate (7:1) and amoxicillin, which could be judged as antibiotic overuse. The next highly prescribed oral antibiotic combination was ${\beta}$-lactam/macrolide antibiotic combination probably for URI (11.3%) and ${\beta}$-lactam/nifuroxazide combination (10.0%) presumably for acute diarrhea. Comparatively the oral antibiotic combination prescribed by ENT physicians was negligible except one physician. In conclusion, the antibiotic over-prescription rate by antibiotic combination was much higher in Pediatrics than ENT, even though both clinical departments showed nealy the similar antibiotic prescription rates.

Staphylococcus aureus에 의한 유방염에 대한 β-lactamase 저해제/β-lactam계 항균제 치료 효과 (Antimicrobial effects of β-lactamase inhibitor/β-lactam antibiotics on staphylococcal mastitis)

  • 임숙경;임재향;주이석;문진산;이애리;고홍범
    • 대한수의학회지
    • /
    • 제43권1호
    • /
    • pp.113-120
    • /
    • 2003
  • The antimicrobial effect of ${\beta}$-lactam antibiotics, which had ${\beta}$-lactamase inhibitor activity, on Staphylococcus aureus isolated from mastitis was investigated in this study. Out of 166 isolates, 99 isolates (59.6%) produced ${\beta}$-lactamase, and 98 isolates of 99 were ${\beta}$-lactamase positive in above $12.5{\mu}g/m{\ell}$ MIC of penicillin. In the providence distribution, ${\beta}$-lactamase production rate of 4 providence, Gangwon, Gyeonggi, Chungcheong, and Jeolla was 100%, 65.7%, 58.8%, and 50.0%, respectively. Antibiotic activities of ${\beta}$-lactam antibiotics against lactamase positive isolates also were investigated. Antimicrobial effects of ampicillin/sulbactam or amoxicillin/clavulanic acid treated group were better than ampicillin or amoxicillin treated group. In antimicrobial effects on intracellular S aureus, there was no difference 1 hour and 4 hour treatment in control, ampicillin, and amoxicillin group, but in 18 hours treatment, ampicillin/sulbactam or amoxicillin/clavulanic acid had a better effect than ampicillin or amoxicillin (p<0.05).

$\beta$-락탐계 항생물질의 폴리아크릴산 중합체의 합성 및 항균성 (Synthesis and Antibiotic Activities of Poly (acrylic acid) Modified $\beta$-Lactam Cyclics)

  • 진정일;최성모;장민선;민신홍
    • 약학회지
    • /
    • 제30권5호
    • /
    • pp.232-237
    • /
    • 1986
  • A series of modified poly(acrylic acid)'s containing different levels of 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and 6-[D-(-)-$\alpha$-aminophenyl acetamido] penicillanic acid (ampicillin) as pendant groups were prepared. Antibiotic activities of the newly prepared drugs were examined against the various gram-positive and gram-negative bacteria. It was found that ampicillin modified composition posses antibiotic activities against the gram-negative as well as the gram-positive bacteria.

  • PDF

새로운 ${\beta}-lactam$계 항생물질(H-487)의 in vitro 항균활성 (In vitro, anti-Microbial Activity of a Novel Beta-lactam Antibiotics, YH-487)

  • 강희일;이종욱;정동효;원유정
    • Applied Biological Chemistry
    • /
    • 제40권1호
    • /
    • pp.23-29
    • /
    • 1997
  • 7-Aminocephalosporanic acid (7-ACA)로부터 새로운 구조의 ${\beta}-lactam$계 항생물질을 개발하기 위한 목적으로 7- ACA의 $C_3$ 위치에 thio1기를 도입하고 $C_7$위치 aminothiazole기를 결합시킨 신규 화합물 (YH-487)을 제조한 다음 이의 구조 확인과 항균활성, 작용기전, ${\beta}-lactamase$에 대한 안정성, 다른 항생물질과의 병용 효과 등을 검토한 결과 YH-487은 세균에 대한 항균활성과 살균력이 CTX보다 우수한 신규의 제3세대 cephem계 물질이었다. 또한 YH-487의 살균작용 메카니즘은 PBP-lA, PBP-1B와 PBP-3의 친화성에 의한 세균의 세포벽 합성저해에 의한 것이었다. ${\beta}-lactamase$에 대한 안정성은 E. coli가 생성하는 TEM-1 type Pcase에는 cefotiam 또는 cefotaxime과 동등한 수준이었으나 Stahylococcus aureus가 생성하는 Pcase와 Pseudomonas aeruginosa가 생성하는 CSase와 Proteus vulgaris 생성의 Cxase에는 cefotiam 또는 cefotaxime 보다 높은 안정성을 나타내어 ${\beta}-lactamase$에 대해 매우 안정한 약물임을 나타내었다. 한편 다른 항생물질과의 병용효과 실험결과는 gentamicin, tobramycin 그리고 amikacin과 병용시 녹농균에 대하여 상승효과가 인정되었고 Enterobacter cloacae에 대하여는 amikacin과 병용시 상승작용이 있었다.

  • PDF

Characterization of Extended-Spectrum-$\beta$-Lactamase Genotype TEM, SHV and CTX-M from Clinical Isolates of Klebsiella pneumoniae and Comparison with Antibiotic Susceptibility Test

  • Kim Yun-Tae;Oh Kwang-Seok;Choi Seok-Cheol;Kim Tae-Un
    • 대한의생명과학회지
    • /
    • 제11권3호
    • /
    • pp.389-396
    • /
    • 2005
  • Resent studies have reported increased isolation of extended-spectrum $\beta-lactamase$ (ESBL) producing strains at several hospital in Korea. We studied to investigate the isolation rates of ESBL strains from clinical isolates of Klebsiella pneumoniae and to characterize differences in types using analyses of genotyping and antibiotic susceptibility test. Antibiotic susceptibility test with confirmation of ESBL by double disk synergy test was performed on the 54 ESBL strains of Klebsiella pneumoniae from a hospital in Busan. Transfer of resistant gene in ESBL strains resistant to 3rd generated antibiotics was confirmed by transconjugation test using E. coli $RG176^{nal(r)}$. blaTEM, blaSHV, blaCTX-M genes were detected by PCR. ESBL producing strains had 100% of resistant rate to ampicillin, azteronam, cefazolin, cefepime and ceftriaxone ($\beta-lactam$ antibiotics). Forty strains of bla TEM$(74\%)$, 41 strains of bla SHV $(76\%)$, 23 strains of bla CTX-M $(43\%)$ were found, respectively. The strains had one or more genes. They had high resistant rates to $\beta-lactam$ antibiotics including cephalosporin. The resistant rates of strains with multiple resistant genes were higher than those of strains with single resistant gene.

  • PDF