• 제목/요약/키워드: $\beta$-NADPH

검색결과 54건 처리시간 0.022초

인간 표피 각질형성세포에서 대기 미립자 물질 PM10에 의해 유도되는 반응성 산소종의 생성에서 Dual oxidase 2의 역할 (Role of Dual Oxidase 2 in Reactive Oxygen Species Production Induced by Airborne Particulate Matter PM10 in Human Epidermal Keratinocytes)

  • 석진경;최민아;하재원;부용출
    • 대한화장품학회지
    • /
    • 제45권1호
    • /
    • pp.57-67
    • /
    • 2019
  • 직경 $10{\mu}m$ 미만의 대기 미립자 물질(particulate matter, PM10)은 다양한 신체기관에서 산화 스트레스와 염증반응을 유발한다. 본 연구의 목적은 인간 표피 각질형성세포(HEK)에서 PM10에 의해 유도되는 반응성 산소종(ROS) 생성의 메커니즘을 알아보는 것이다. 배양된 HEK를 PM10에 노출시켰을 때 ROS가 증가하였으며, 이는 항산화제 apocynin에 의해 저해되었다. PM10에 의해 유도되는 ROS 생성에서 NADPH oxidase(NOX) family의 역할을 규명하기 위하여 이들의 mRNA 발현을 분석하였다. PM10은 NOX1, NOX2, dual oxidase (DUOX)1 및 DUOX2의 mRNA 발현을 증가시켰다. 다른 NOX들에 비교하여 DUOX1 및 DUOX2의 발현 수준이 높았으며, 이들 효소의 maturation factors, 즉 DUOXA1와 DUOXA2의 mRNA 발현도 PM10에 의하여 증가하였다. 칼슘 의존성 효소인 DUOX1과 DUOX2가 PM10에 의해 유도되는 ROS의 생성을 매개하는지 조사하였다. 선택적인 세포내 칼슘 킬레이터인 BAPTA-AM은 PM10 및 칼슘 ionophore A23187에 유도된 ROS 생성을 감소시켰다. 작은 간섭 RNA (siRNA)에 의한 DUOX2의 하향 조절은 PM10에 의해 유도된 ROS의 생성을 감소시켰고 DUOX1 siRNA는 영향이 없었다. PM10은 interleukin $(IL)-1{\beta}$, IL-6, IL-8 및 interferon $(IFN)-{\gamma}$ 등 사이토카인의 발현을 증가시켰다. siRNA에 의한 DUOX2의 하향 조절은 $IFN-{\gamma}$의 발현을 저해하였지만 다른 사이토카인의 발현은 저해하지 않았다. 본 연구는 PM10에 노출된 HEK의 ROS 생성 및 염증 반응에서 DUOX2가 중요한 역할을 함을 시사한다.

Genenation of structural diversity in polyketides by combinatorial biosynthesis of polyketides: Part I. Generation of multiple bioactive macrolides by hybrid modular polyketide synthases in Streptomyces venezuelae, Part II. Production of novel rifamycins by combinatorial biosynthesis

  • Yoon, Yeo-Joon
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 2002년도 학술발표대회
    • /
    • pp.18-25
    • /
    • 2002
  • The pikromycin biosynthetic system in Streptomyces venezuleae is unique for its ability to produce two groups of antibiotics that include the 12-membered ring macrolides methymycin and neomethymycin, and the 14-membered ring macrolides narbomycin and pikromycin. The metabolic pathway also contains two post polyketide-modification enzymes, a glycosyltransferase and P450 hydroxylase that have unusually broad substrate specificities. In order to explore further the substrate flexibility of these enzymes a series of hybrid polyketide synthases were constructed and their metabolic products characterized. The plasmid-based replacement of the multifunctional protein subunits of the pikromycin PKS in S. venezuelae by the corresponding subunits from heterologous modular PKSs resulted in recombinant strains that produce both 12- and 14-membered ring macrolactones with predicted structural alterations. In all cases, novel macrolactones were produced and further modified by the DesVII glycosyltransferase and PikC hydroxylase leading to biologically active macrolide structures. These results demonstrate that hybrid PKSs in S. venezuelae can produce a multiplicity of new macrolactones that are modified further by the highly flexible DesVII glycosyltransferase and PikC hydroxylase tailoring enzymes. This work demonstrates the unique capacity of the S. venezuelae pikromycin pathway to expand the toolbox of combinatorial biosynthesis and to accelerate the creation of novel biologically active natural products. The polyketide backbone of rifamycin B is assembled through successive condensation and ${\beta}$-carbonyl processing of the extender units by the modular rifamycin PKS. The eighth module, in the RifD protein, contains nonfunctional DH domain and functional KR domain, which specify the reduction of the ${\beta}$-carbonyl group resulting in the C-21 bydroxyl of rifamycin B. A four amino acid substitution and one amino acid deletion were introduced in the putative NADPH binding motif in the proposed KR domain encoded by rifD. This strategy of mutation was based on the amino acid sequences of the corresponding motif of the KR domain of module 3 in the RifA protein, which is believed dysfunctional, so as to introduce a minimum alteration and retain the reading frame intact, yet ensure loss of function. The resulting strain produces linear polyketides, from tetraketide to octaketide, which are also produced by a rifD disrupted mutant as a consequence of premature termination of polyketide assembly. Much of the structural diversity within the polyketide superfamily of natural products is due to the ability of PKSs to vary the reduction level of every other alternate carbon atom in the backbone. Thus, the ability to introduce heterologous reductive segments such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) into modules that naturally lack these activities would increase the power of the combinatorial biosynthetic toolbox. The dehydratase domain of module 7 of the rifamycin PKS, which is predicted to be nonfunctional in view of the sequence of the apparent active site, was replaced with its functional homolog from module 7 of rapamycin-producing polyketide synthase. The resulting mutant strain behaved like a rifC disrupted mutant, i.e., it accumulated the heptaketide intermediate and its precursors. This result points out a major difficulty we have encountered with all the Amycolatopsis mediterranei strain containing hybrid polyketide synthases: all the engineered strains prepared so far accumulate a plethora of products derived from the polyketide chain assembly intermediates as major products instead of just analogs of rifamycin B or its ansamycin precursors.

  • PDF

Saccharomyces cerevisiae TSA1의 보존된 아스파트산 잔기 및 세린 잔기의 변이가 과산화효소 활성 및 샤페론 활성에 미치는 영향 (Effects of Mutation at Two Conserved Aspartate Residues and a Serine Residue on Functions of Yeast TSA 1)

  • 이송미;조은이;김강화
    • 한국미생물·생명공학회지
    • /
    • 제45권1호
    • /
    • pp.81-86
    • /
    • 2017
  • 퍼옥시레독신은 티오레독신, 티오레독신 환원효소, NADPH로 이루어진 티오레독신 시스템의 환원력을 이용하여 과산화물을 제거하는 티오레독신 과산화효소 활성과 다른 단백질의 열변성에 의한 응집을 막아주는 샤페론 활성을 갖는 효소이다. 정형 2-Cys Prx군에 속하는 퍼옥시레독신 참고서열 1,024개 중 부분적인 서열 등을 제외한 967개 서열을 정렬하였을 때 75번과 103번 아스파트산 잔기는 99% 보존되었고, 73번 세린 잔기는 97% 보존되었음에도 불구하고 잘 보존된 아스파트산 잔기와 세린 잔기에 대해 알려지지 않았다. 이 잔기가 TSA1의 두가지 효소 활성에 미치는 영향을 알아보기 위해 재조합 단백질을 이용하여 활성도를 알아보았다. in vitro 실험을 통하여 잘 보존된 잔기인 103번 아스파트산은 75번 아스파트산보다 티오레독신 퍼옥시레독신 활성 및 분자 샤페론 활성에 더 영향을 미치고, 103번의 음전하는 분자 샤페론 활성에 중요한 역할을 하며 과산화효소활성에는 75번과 103번의 음전하가 관여함을 알 수 있었다. 또한 73의 세린 잔기 역시 과산화효소에 영향을 미치는 잔기임을 알 수 있었다. 최근 출아 효모 퍼옥시레독신인 TSA2의 79번과 109번의 세린 잔기를 시스테인 잔기로 변이시킨 경우 두 변이 단백질 모두 과산화효소 활성과 샤페론 활성이 증가되었는데 이는 ${\beta}$-sheet 구조의 증가와 관련되는 것으로 보고하였다[28]. 이들 두 세린 잔기는 TSA1 구조에 의하면 모두 ${\alpha}$-나선 구조에 위치하였다. 반면에 73번의 세린 잔기는 ${\beta}$-sheet의 C-말단에 위치하는 잔기로 과산화효소 활성에 대한 영향이 다르게 나타나는 것으로 추정된다. 추후 생체 내 실험을 통하여 아스파트산 잔기의 변이가 과산화물 저항성이 미치는 영향 및 열 저항성(thermal stress)에 미치는 역할을 살펴볼 필요가 있다. 또한 아스파트산 잔기와 과산화물과의 반응 및 분자 샤페론과의 반응에 장애가 되는 요인이 무엇인지에 대한 추가 연구가 필요할 것이다.

홍삼 사포닌 분획의 Nrf2 Keap1 신호전달체계 조절을 통한 지방축적 및 활성산소종 억제효과 (Red ginseng-derived saponin fraction inhibits lipid accumulation and reactive oxygen species production by activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway)

  • 김채영;강보빈;황지수;최현선
    • 한국식품과학회지
    • /
    • 제50권6호
    • /
    • pp.688-696
    • /
    • 2018
  • 본 연구에서는 홍삼 사포닌 분획(SF)으로부터 진세노사이드의 조성을 분석하고 지방세포의 분화 및 지방축적에 대한 효과를 측정하였다. SF는 지방분화인자인 $PPAR{\gamma}$, $C/EBP{\alpha}$의 단백질 양을 억제함으로써 지방분화 동안 효과적으로 지방축적을 억제하였으며 주로 지방분화 초기시점부터 지방분화 초기인자인 $C/EBP{\beta}$, KLF2의 조절작용을 통해 지방축적을 억제하는 것으로 관찰되었다. SF는 또한 지방분화 동안 생성되는 ROS의 생성을 효과적으로 억제하였는데 이는 SF가 산화방지 시스템인 Nrf2/Keap1 경로를 활성화하기 때문으로 판단되며 특히 Nrf2의 핵 내로의 진입을 활성화 함으로써 Nrf2의 타겟 산화방지 분자들인 HO-1, NQO1의 발현을 촉진하였다. 이는 지방분화 동안 SF의 지방축적 억제 효과가 Nrf2의 활성화와 밀접하게 관련이 있음을 보여준다.